
A Large-Scale Empirical Study on the Occurrence of Improperly
Secured Application Programming Interfaces*

Craig Opie1 and Hangbo Zhang2

Index Terms— Cybersecurity, Application Programming In-
terfaces, Vulnerability, Bug Bounty Enumeration, Severity
ranking

Abstract— The intent of this paper is to conduct a large-
scale empirical study on bug bounty reports related to API
vulnerabilities and weaknesses. We aim to identify common
critical and important API vulnerabilities discovered through
the bug bounty process, using Microsoft’s security update
severity rating system. Additionally, we have defined a method
to determine the severity ranking of a vulnerability. Our
findings are cross-validated with OWASP Top 10 to determine
the change in occurrence of each vulnerability. Our research
can help developers determine real-world vulnerabilities and
weaknesses, assign severity to common API vulnerabilities, and
validate OWASP Top 10 regarding API. Furthermore, our study
can provide a pathway for researchers to study and address
common vulnerabilities.

I. INTRODUCTION

Secure software is the foundation of a high-quality soft-
ware system. Business models have shifted to include se-
curity in the software development life cycle due to the
high cost of insecure applications and systems. Cybercrime
is expected to cost the world $10.5 trillion annually by
2025 [1]. Despite the increase in cybercrime, on December
13th, 2016, Congress passed the 21st Century Cures Act [2],
which requires healthcare providers to publish application
programming interfaces (APIs) to provide complete access
to all data formats and elements (known as "resources")
of a patient’s electronic health record (EHR) within one
year of the date of enactment. Health Level Seven Inter-
national (HL7), a healthcare standards organization, created
the Fast Healthcare Interoperability and Resources (FHIR,
pronounced "fire") API, which built upon earlier versions of
HL7 data format standards. However, the FHIR API offered
easy-to-use implementation through HTTP-based RESTful
API protocol with resources represented in either RDF,
XML, or JSON formatting, ultimately leading to the FHIR
API protocol being widely accepted across the healthcare
industry. Research published by cybersecurity analyst Alissa
Knight [3] has revealed that five separate insecure implemen-
tations of the FHIR API protocol exposed over four million
patient and clinician EHR resources across forty-eight mobile
web clients and 25,000 healthcare providers and payers.

*This work was not supported by any organization
1C. Opie is a student of Computer Science, College of Natural Science,

University of Hawai‘i at Mānoa, POST 318, 1680 East-West Road, Hon-
olulu, HI 96822 opieca at hawaii.edu

2H. Zhang is a student of Computer Science, College of Natural Sci-
ence, University of Hawai‘i at Mānoa, POST 318, 1680 East-West Road,
Honolulu, HI 96822 hangbo at hawaii.edu

In September 2018, Facebook announced a vulnerability
in its API code that resulted in the exposure of data from
fifty million users and the theft of API access tokens [4]. This
event followed Cambridge Analytica’s abuse of Facebook’s
API security infrastructure, which allowed them to acquire
data on eighty million Facebook users [5]. Despite the
availability of patches to secure API frameworks, organi-
zations often fail to implement them in a timely manner.
For example, Equifax failed to patch a vulnerability in the
Apache Struts framework used for their API, resulting in the
exposure of personal information and social security numbers
of over 143 million US citizens, with damages totaling more
than 68 billion dollars [6].

The examples provided above are of large, known security
events that have been reported. However, according to a
survey conducted in 2017 on US companies with at least
250 employees or $1 million in revenue, the average-sized
business manages as many as 363 public-facing APIs [7].
Furthermore, the Postman API Platform - a platform used
by more than 17 million developers worldwide to build and
use APIs - reports that the number of grouped API requests
collected by their software has increased from less than half
a million in 2016 to over 46 million as of January 2021,
indicating that API usage is rapidly increasing [8].

The increasing use of cloud computing and remote work
has led to a greater reliance on third-party APIs, which were
originally designed for back-end applications that are not vis-
ible to the user [9]. However, the generic reuse of these APIs
can lead to vulnerabilities, as identified by cybersecurity
analyst Alissa Knight [3]. Average-sized businesses are more
likely to use a readily available third-party solution with-
out researching it properly. Unfortunately, common security
measures such as web application firewalls and vulnerability
identification software may not detect or prevent misuse of
APIs as the attack vector is through the feature that makes
APIs desirable. To secure APIs and protect existing networks,
it is necessary to compare research publications on APIs with
common vulnerabilities and weaknesses identified through
bug bounty programs.

In this paper, we investigate publicly available bug bounty
reports from HackerOne [10], BugCrowd [11], and Pen-
tester.land [12] to identify common vulnerabilities and weak-
nesses regarding APIs. We also discuss the severity of
our findings when compared to existing publications and
known issues captured through common vulnerability and
weakness enumeration using mitre.org. This approach is
different from previous works, which focus on conducting
surveys to identify demographics about API use, classifying

previous API vulnerabilities, and balancing API security with
API implementation in terms of functionality, speed, and
performance. We concur with recent findings by Knight [3]
that existing vulnerabilities can be classified into multiple
categories aligned with the Open Web Application Security
Project (OWASP1) API Security Top 102 [13]. We expand
existing work by providing the following contributions:

1) We perform a large scale empirical study on bug bounty
reports regarding API vulnerabilities and weaknesses.

2) We identify common critical and important API vul-
nerabilities discovered in the bug bounty process using
Microsoft’s security update severity rating system.

3) We determine if mapped research publications, that use
security bug reports, capture the API vulnerabilities
and weaknesses identified in our large scale empirical
research of bug bounty reports regarding API vulnera-
bilities and weaknesses.

Our research addresses the challenges faced by devel-
opers and security researchers by determining real-world
vulnerabilities and weaknesses identified through relevant
bug bounty reports. This helps developers assign severity to
common API vulnerabilities and validates existing research
and security practices related to APIs. As a result, developers
and security researchers will have a deeper understanding of
API security from both academia and industry, enabling them
to enhance their own API security practices.

This paper is organized as follows: In Section II, we
describe the goals of the study and the research questions
we aim to address. In Section III, we provide background
information and review related publications.

II. GOAL AND RESEARCH QUESTIONS

A. Research Questions

The objective of this research paper is to help software
engineers identify common security gaps related to APIs
by conducting a systematic comparison of mapped research
publications that focus on security, common weakness and
vulnerability enumeration, and publicly available bug bounty
reports.

1) RQ1: What are the common vulnerability and weak-
ness types associated with APIs identified through
publicly available bug bounty reports?
Vulnerabilities and weaknesses are often identified and
exploited in trending behavior. Researchers or analysts
identify a vulnerability and then search for similar
vulnerabilities and weaknesses. This information allows
researchers and developers to identify when a vulnera-
bility or weakness is discovered to be widely effective,
enabling them to prioritize updates for quality.

1OWASP is an online community that produces freely-available articles,
methodologies, documentation, tools, and technologies in the field of web
application security. It provides free and open resources.

2OWASP Top 10 is a list of the most critical web application security risks
identified by the OWASP community. The list is updated every three years.
The list is determined by a panel of experts from the OWASP community,
who select the top 10 risks that are most prevalent, easy to exploit, and
have a significant impact on the organization.

2) RQ2: Which common vulnerability and weakness
types associated with APIs are rated critical or
important using Microsoft’s security update severity
rating system?
Common vulnerabilities and weaknesses are not typi-
cally published with severity ratings. It is usually up to
developers to determine the severity of each vulnerabil-
ity for each project. However, scanning common vul-
nerability and weakness data sets and applying severity
ratings is a time-consuming task that increases overhead
that must be allocated by each project. Consolidating
common vulnerabilities and weaknesses associated with
APIs with severity ratings will reduce the overhead
allocation necessary for existing and future projects.

3) RQ3: Which mapped research publications that use
security bug reports capture the publicly available
bug bounty reports for APIs?
Mapped research publications that use security bug
reports are used by developers and researchers to iden-
tify applicable vulnerabilities and weaknesses. However,
comparing publicly available bug bounty reports for
APIs with mapped research publications can validate
the applicability of prior research to APIs.

III. LITERATURE REVIEW

A. Background

1) Background on Systematic Mapping Studies (SMS):
Systematic mapping is a technique that is widely used in
medical research and more recently in software engineer-
ing [14] [15] [16]. An SMS provides a "map" of the research
field by classifying papers on the basis of relevant categories
and counting the work in each of those categories. An
SMS offers a summary of the research domain to support
researchers in identifying topics that are well-studied and
identifying gaps that need further analysis [17]. For this
research, we used a peer-reviewed SMS titled "Security
Bug Report Usage for Software Vulnerability Research: A
Systematic Mapping Study [16]."

2) API Security: An API is an interface that defines
how different software interacts. It controls the types of
requests that occur between programs, how these requests
are made, and the kinds of data formats that are used. It
acts as the back-end framework for applications. By nature,
APIs expose application logic and sensitive data, such as
Personally Identifiable Information (PII), and therefore have
increasingly become a target for attackers. API security refers
to the practice of preventing or mitigating attacks on APIs. It
is a specific security focus that addresses the unique security
risks of APIs.

3) Bug Bounty Program: A bug bounty program is a
deal offered by many websites, organizations, and software
developers, where individuals can receive recognition and
compensation for reporting bugs, particularly those related to
security exploits and vulnerabilities. These programs allow
developers to discover and resolve bugs before the general
public is aware of them, preventing incidents of widespread

abuse and data breaches. Many organizations have imple-
mented bug bounty programs, including Facebook, Google,
Microsoft, and the Internet Bug Bounty [18] [19].

4) Exploit and Vulnerability: An exploit is a piece of
software, a chunk of data, or a sequence of commands that
takes advantage of a bug or vulnerability to cause unintended
or unanticipated behavior to occur on computer software,
hardware, or something electronic (usually computerized). It
is written either by security researchers as a proof-of-concept
threat or by malicious actors for use in their operations.
When used, exploits allow an intruder to remotely access
a network and gain elevated privileges, or move deeper into
the network [20].

Vulnerabilities are flaws in a computer system that weaken
the overall security of the device/system. Vulnerabilities can
be weaknesses in either the hardware itself or the software
that runs on the hardware. Vulnerabilities can be exploited by
a threat actor, such as an attacker, to cross privilege bound-
aries and perform unauthorized actions within a computer
system. To exploit a vulnerability, an attacker must have at
least one applicable tool or technique that can connect to a
system weakness. In this frame, vulnerabilities are known as
the attack surface [21].

5) Microsoft Security and Severity Rating System: Mi-
crosoft Security is a built-in software for Windows OS that
includes virus and threat protection, account protection, fire-
wall and network protection, app and browser control, device
security, device performance and health, family options, and
automatic security updates. It continually scans for malware,
viruses, and security threats [22]. Microsoft publishes a
severity rating system that rates each vulnerability according
to the worst theoretical outcome if the vulnerability is ex-
ploited, to help customers understand the risk associated with
each vulnerability they patch. The rating system is intended
to provide a broadly objective assessment of each issue,
distinct from the likelihood of a vulnerability being exploited.
There are four levels of the rating: critical, important, mod-
erate, and low. Each rating has different identifiers. Critical
vulnerabilities can be exploited to allow code execution
without user interaction, important vulnerabilities can result
in compromise of the confidentiality, integrity, or availability
of data or processing resources with warnings or prompts,
moderate vulnerabilities have impacts that are mitigated to a
significant degree by factors such as authentication require-
ments or non-default configuration, and low vulnerabilities
have impacts that are comprehensively mitigated by the
characteristics of the affected component [23].

B. Related Work

To avoid duplicating a study that has already been con-
ducted, we first identified related studies and reviews to
determine the need for and timeliness of our study.

Farzana et al. [16] conducted a systematic review of 46
publications that used security bug reports and identified
three main topics: vulnerability classification, vulnerability
summarization, and vulnerability dataset construction. Their

study found potential research opportunities for further de-
velopment in vulnerability analysis, but did not provide a
detailed description of API security threats and aspects,
focusing more on software security in general.

Davis et al. [9] investigated why API insecurity is often
overlooked in a zero-security environment, while Bigelow
et al. [24] discussed the impact of data vulnerability from
using insecure APIs in a secure environment. Farhan et
al. [25] focused on API security, exploring how user and
developer culture and behavior might have affected API
security awareness. These studies provided insight into the
reasons behind API insecurity, its effects, and advice for
improvement, but did not provide empirical evidence of
the cause of API insecurity or the consequences of API
insecurity, or detailed identification of API vulnerabilities.

Diaz-Rojas et al. [26] reviewed literature and identified 66
threats to web APIs, 21 techniques, 11 API design patterns
and 34 methods that can be applied at the design level to
detect, resist, react to, or recover from the discovered threats.
They also noted the relationship between the discovered
threats and techniques in regards to the reported effectiveness
of certain techniques and difficulty of defending against cer-
tain threats. While this study provided detailed information
about web API vulnerabilities and weaknesses, it was limited
to web APIs only.

Based on these findings, we conclude that to identify
common security gaps related to APIs, we need to conduct
our own study, using a large-scale empirical study of bug
bounty reports to identify critical and important API vulner-
abilities. We will also verify our findings by comparing them
to current bug bounties to validate continuing vulnerabilities
with APIs.

IV. METHODOLOGY

Fig. 1. Methodology Flowchart

We investigated and determined common vulnerability and
weakness types associated with APIs using vulnerability
databases and bug bounty platforms. Some industry lead-
ers and government organizations publish patched security
vulnerabilities which can be found in the National Vul-
nerability Database [27]. However, others choose to ignore
reporting guidelines or fail to take action to correct the

vulnerability at all. To address this, a cybersecurity com-
munity effort to publish vulnerabilities to a public database,
known as the Common Vulnerabilities and Exposures (CVE)
database [28], has emerged as a means to hold companies
accountable for their cybersecurity and privacy responsibili-
ties. Bug bounty platforms offer a unique perspective on the
frequency, severity, and longevity of vulnerabilities after they
have been published in the NVD and CVE databases. Our
process consisted of the following five steps: (i) collecting
bug reports for API vulnerabilities; (ii) performing bug report
quality assessment, sanitization, and classification using the
OWASP guidelines [13] for API security; (iii) identifying
vulnerabilities with critical or important severity ratings
using the Microsoft Security Update Severity Rating System;
(iv) quantifying and ranking the bugs reported after they
have been published in public vulnerability databases; and
(v) validating prior research SMS applicability to APIs and
OWASP API security top 10.

A. Collect Bug Reports for API Vulnerabilities

We collected bug reports for API vulnerabilities from
HackerOne, BugCrowd, and Pentester.land using their built-
in search filters for the keyword ’API’ and a self-built web
scraping tool [29]. A total of 1028 reports were extracted
from HackerOne, 15 reports from BugCrowd, and 85 reports
from Pentester.land, resulting in a dataset of 1128 reports.
The collected data was cataloged by title, report number,
URL, severity rating, bounty, upvotes, CVE, and report
details.

We chose to use HackerOne, BugCrowd, and Pen-
tester.land for this report because each site offered con-
solidated disclosed reports that were not repeated among
each other. Additionally, the reports were able to be col-
lected via web scraping and allowed for convenient data
processing within a python application [29]. HackerOne and
Pentester.land also offered built-in filtering for keywords.
To determine which keywords were most effective at find-
ing API-related bug reports, we performed a search using
HackerOne’s built-in bug report filter using keywords asso-
ciated with APIs in general: API, Application Programming
Interface, REST, RESTful, and SOAP. Then, we randomly
sampled 25 bug reports for each keyword to determine the
ratio of True Positives. Our sample results led us to use ’API’
as our keyword when searching for API-related bug bounties.

• ‘API’ returned more than 1,000 results with 92% of the
samples being related to APIs.

• ‘Application Programming Interface’ returned 15 results
with 20% of results being related to APIs.

• ‘REST’ returned more than 1,000 results with 20% of
the samples being related to APIs.

• ‘RESTful’ returned more than 1,000 results with 25%
of the samples being related to APIs.

• ‘SOAP’ returned 21 results with 81% of the results
being related to APIs.

We collected our data using an ASUS PN51-E1 computer,
equipped with an AMD Ryzen 7 5700u processor, 32 GiB
of DDR4-3200 SODIMM RAM, and a 1.0TB M.2 SSD.

The computer was running Ubuntu 20.04.5 LTS (64-bit) via
a 1Gbps internet connection provided by Spectrum Charter
Communications. The internet connection was tested using
Google’s Measurement Lab, and it showed that it had a
download speed of 717 Mbps and an upload speed of 40
Mbps, immediately after the completion of data collection.

We collected bug reports from HackerOne using a Python
application [29] that scraped the HackerOne hacktivity web-
page by providing a keyword of ’API’, specifying a sort
based on ’Popularity’, and specifying a type of ’Disclosed’.
The Python application [29] used a combination of Selenium
and Beautiful Soup to control the web browser and parse
the information received. We used Selenium to continuously
scroll down on HackerOne’s hacktivity page for a duration
of 300 seconds to populate our cursory dataset. This step
collected the bug report number, title, URL, severity rating,
associated CVE ID, bounty amount, and number of upvotes.
Then, each report’s associated URL was visited to collect
the bug report’s date, weakness description, summary, and
details exchanged between the security researcher and the
host organization. The database was saved to an SQLite3
database for storage and exported to a CSV file for post-
processing.

We collected bug reports from BugCrowd manually be-
cause BugCrowd does not offer a keyword filter, and only
had 131 total disclosed bug reports to date. Our team
manually viewed each disclosed bug report and entered bug
reports associated with APIs into a Google spreadsheet [30].

We collected bug reports from Pentester.land by down-
loading the write-ups as a JSON file 3 and used a Python
application [29] to parse the bug reports for our keyword
’API’ in the Title field. The results were saved as a CSV file
for post-processing.

B. Perform Quality Assessment, Sanitization, Classification

We removed 22 reports that did not contain sufficient
details about the bug, 11 reports that were challenge event
write-ups, and 29 reports where the company stated that the
bug was known, previously disclosed, or previously identified
but not yet corrected to ensure that duplicate reports were
not included in our study. To further refine the data, we per-
formed word sanitization to remove filler words and created
a word cloud to easily identify key concepts. Additionally,
vulnerabilities were grouped by common CVE names to
assist in classification. This work was performed using an
online tool written in Python [31]. We first ran the NLP
on the dataset without stopwords. Then, we extracted the
stopwords from the generated word cloud and re-ran the NLP
on the dataset with the extracted stopwords. We repeated
these steps until a valuable word cloud was generated, as
shown in Table 1.

Vulnerability classification was catalogued into applicable
terms and categories taken from OWASP and included:
Broken Object Level Authorization (BOLA), Broken User
Authentication, Excessive Data Exposure, Broken Function

3https://pentester.land/writeups.json

Level Authorization, and Mass Assignment, following the
findings from Knight [3]. We manually renamed the weak-
nesses to match the categories from the OWASP, such as
renaming Information Disclosure to Excessive Data Ex-
posure, and Improper Access Control to Broken Access
Control. Additionally, we combined some weaknesses into
the same categories, such as Code/Command Injection and
SQL Injection to Injection. The results can be found in Table
2.

C. Identify Vulnerabilities with Severity Ratings

After processing the data, we refined the dataset according
to a severity taxonomy which includes critical, important,
moderate, and low levels, following Microsoft’s rating sys-
tem [23]. Out of the total of 1056 reports, 125 were labeled
as critical (11.84%), 232 were labeled as important (21.97%),
433 were labeled as moderate (41.00%), 178 were labeled
as low (16.86%), and 88 were not labeled with any severity
level (8.33%).

D. Quantify and Rank the Bugs

The bugs were categorized based on the number of oc-
currences and ranked according to their severity level. The
severity level was determined by using the weighted values
established by the Department of Defense Iron Bank in the
Overall Risk Assessment Calculation [32]. The determination
was heavily influenced by the severity rating and not by the
number of occurrences, as a single injection attack can be
more damaging to an organization than ten security miscon-
figurations or insufficient logging or monitoring events. The
weight assigned to each severity level is as follows: Critical
- 10, Important - 4, Moderate - 0.5, and Low - 0.25. We used
the following equation to determine the rank:

Rank = NSf

N = NumberOfOccurrences

Sf = SeverityFactor

The vulnerabilities were grouped by OWASP vulnerability
type, and each vulnerability was evaluated for its severity
rating. We used the mode (the most commonly occurring
value) of each severity rating within each vulnerability type
to determine the most commonly occurring severity rating.
If there were two modes, we selected the more severe rating
as the mode for that vulnerability type. We then multiplied
the number of occurrences by the most commonly occurring
severity rating for each vulnerability type to determine the
vulnerability type’s rank. The results of this calculation are
available in Table 2.

V. RESULTS

After processing the data and refining the dataset accord-
ing to this taxonomy, we found that out of the total of 1056
reports, 158 reports were related to Information Disclosure,
representing 14.96% of the total. 118 reports were related
to Cross-Site Scripting (XSS) which is 11.17%, 76 reports
were related to Improper Authentication which is 7.20%, 67

Vulnerability Category Count
Excessive Data Exposure 169
Broken Access Control 114
Cross-Site Scripting (XSS) 104
Injection 90
Broken User Authentication 76
Cross-Site Request Forgery (CSRF) 56
Privilege Escalation 49
Server-Side Request Forgery (SSRF) 38
Denial of Service 34
Business Logic Error 31
Lack of Resource and Rate Limiting 28
Security Misconfiguration 20
Memory Corruption 19
Clear-text Storage of Sensitive Information 18
Cryptography Failures 13
Improper Validation of Array Index 11
Buffer Over-read 7
Open Redirect 7
Broken Object Level Authorization 7
Phishing 7

TABLE I
WORD CLOUD TOP 20 RESULTS FOR VULNERABILITY CATEGORIES

reports were related to Improper Access Control which is
6.34%, 57 reports were related to Cross-Site Request Forgery
(CSRF) which is 5.40%, and the remaining 656 reports
were related to other API vulnerabilities, accounting for
54.93%. We have provided the top 5 other API vulnerabilities
to expand the category as follows: Code/Command Injec-
tion, Privilege Escalation, Insecure Direct Object Reference
(IDOR), Server-Side Request Forgery (SSRF), and Violation
of Secure Design Principles.

Vulnerability Category Rank
Injection 467.25
Excessive Data Exposure 335.50
Broken User Authentication 263.25
Broken Access Control 254.25
Cross-Site Scripting (XSS) 248.25
Privilege Escalation 140.75
Cross-Site Request Forgery (CSRF) 103.75
Denial of Service 72.50
Server-Side Request Forgery (SSRF) 56.75
Security Misconfiguration 45.25
Memory Corruption 42.50
Business Logic Error 40.25
Broken Object Level Authorization 39.00
Clear-text Storage of Sensitive Information 34.75
HTTP Request Smuggling 29.25
Cryptography Failures 27.00
Lack of Resource and Rate Limiting 25.25
Open Redirect 19.75
Improper Assets Management 18.75
Buffer Over-read 16.25

TABLE II
RANKING OF THE TOP 20 VULNERABILITY CATEGORIES

Injection consists of sending malicious commands or
codes to an API through a user input field, such as a text
input or file upload. This allows malicious actors to send
code or other executable commands to the API’s interpreter,
which can be used to bypass security, change permissions,
access information, damage or disable the API. 8.5% of the
reports with a severity ranking of 467.25 shows that it was

the most common and severe vulnerability in our dataset.
Excessive Data Exposure occurs when too much infor-

mation is passed from the API to the client, with the
client responsible for filtering what API resources and other
information are displayed to the end-user. This can result
in sensitive information being returned by the API. 16.0%
of the reports with a severity ranking of 335.5 shows that
it was the second most common and severe vulnerability in
our dataset.

Broken User Authentication is an umbrella term for several
vulnerabilities that attackers exploit to impersonate legitimate
users online. These weaknesses can occur in two areas:
session management and credential management. 7.2% of
the reports with a severity ranking of 263.25 shows that it
was the third most common and severe vulnerability in our
dataset.

Broken Access Control occurs when users can act out-
side of their intended permissions, leading to unauthorized
information disclosure, modification, or destruction of data,
or performing business functions outside the user’s limits.
10.8% of the reports with a severity ranking of 254.25 shows
that it was the fourth most common and severe vulnerability
in our dataset.

Cross-Site Scripting (XSS) attacks occur when an attacker
uses a web application to send malicious code, typically in
the form of a browser-side script, to a different end-user.
Flaws that allow these attacks to succeed are widespread and
occur when a web application uses input from a user within
the output it generates without validating or encoding it.
9.8% of the reports with a severity ranking of 248.25 shows
that it was the fifth most common and severe vulnerability
in our dataset.

The other 5 vulnerabilities in the Top 10 are Privilege
Escalation with a severity ranking of 140.75, Cross-Site
Request Forgery (CSRF) with a severity ranking of 103.75,
Denial of Service with a severity ranking of 72.5, Server-
Side Request Forgery (SSRF) with a severity ranking of
56.75, and Security Misconfiguration with a severity ranking
of 45.25.

From Figure 2, it can be seen that there are 125 reports
identified as critical. Out of those reports, 27.2% are related
to Injection, 12% are related to Broken User Authentication,
11.2% are related to Excessive Data Exposure, 10.4% are
related to Broken Access Control, and 10.4% are related to
Cross-site Scripting.

There are 232 reports identified as important, out of
which 15.5% are related to Excessive Data Exposure, 12.5%
are related to Injection, 10.3% are related to Broken User
Authentication, 9.9% are related to Broken Access Control,
and 9.5% are related to Cross-site Scripting.

There are 433 reports identified as moderate, out of which
20.1% are related to Excessive Data Exposure, 12.0% are
related to Cross-site Scripting, 11.8% are related to Broken
Access Control, 7.4% are related to Broken User Authenti-
cation, and 7.4% are related to Cross-site Request Forgery.

There are 178 reports identified as low, out of which
18.0% are related to Excessive Data Exposure, 15.2% are

Fig. 2. Number of Occurrences and Severity for Top 10 Ranked Vulnera-
bilities

related to Broken Access Control, 9.6% are related to Cross-
site Scripting, 6.2% are related to Lack of Resource and
Rate Limiting, and 5.1% are related to Server-side Request
Forgery.

Therefore, it can be concluded that Injection, Excessive
Data Exposure, Broken User Authentication, Broken Access
Control, and Cross-site Scripting have contributed to the
majority of findings with critical and important severity
rating, 71.2% and 57.7% respectively. This is in agreement
with the Top 10 table, as critical and important have a higher
severity ranking.

By comparing Table 2 and Table 3, it can be seen that 8
vulnerabilities of the OWASP Top 10 2019 can be found
in our dataset. Injection, which is in the 8th position in
OWASP, is ranked as 1st position in our dataset, which might
be due to an increased occurrence in the past three years.
Excessive Data Exposure, which is in the 3rd position in
OWASP, is ranked as 2nd position in our dataset, showing
just a slight increase. Broken User Authentication, which is
in the 2nd position in OWASP, is ranked as 3rd position
in our dataset, showing a slight decrease in occurrence
in the past three years. Security Misconfiguration, which
is in the 7th position in OWASP, is ranked 10th in our
dataset, showing a big decrease in occurrence. Broken Object
Level Authorization, Improper Assets Management, Lack of
Resource and Rate Limiting, and Broken Function Level
Authorization, which are in the 1st, 9th, 4th, and 5th position
in OWASP respectively, are ranked as 13th, 19th, 17th,
and 25th in our dataset, indicating a large decrease in the
occurrence of these vulnerabilities in the past three years, so
less attention is needed. Mass Assignment and Insufficient
Logging and Monitoring, which are in the 6th and 10th
position in OWASP, are not found in our dataset, which
might show that these two vulnerabilities have been tackled
in the past three years. There are a total of 6 vulnerabilities
that were not in the OWASP ranked in the Top 10 of
our dataset, showing a great increase in the occurrence of

these vulnerabilities, which indicates that more attention is
required from developers.

A. Answering RQ1, What are the common vulnerability and
weakness types associated with application programming
interfaces identified through publicly available bug bounty
reports?

The most common vulnerabilities and weakness types
associated with application programming interfaces were
identified by grouping them into vulnerability types defined
by OWASP and counting the number of vulnerabilities in
each type. The 10 most common vulnerability and weakness
types are:

1) Excessive Data Exposure (169 occurrences)
2) Broken Access Control (114 occurrences)
3) Cross-Site Scripting (XSS) (104 occurrences)
4) Injection Attacks (90 occurrences)
5) Broken User Authentication (76 occurrences)
6) Cross-Site Request Forgery (CSRF) (56 occurrences)
7) Privilege Escalation (49 occurrences)
8) Server-Side Request Forgery (SSRF) (38 occurrences)
9) Denial of Service (DOS) (34 occurrences)

10) Business Logic Error (31 occurrences)

B. Answering RQ2, Which common vulnerability and weak-
ness types associated with application programming in-
terfaces are rated critical or important using Microsoft’s
security update severity rating system?

Each vulnerability was manually assessed and assigned
a severity rating using Microsoft’s security update severity
rating system. The vulnerability’s description, impact, com-
plexity, CVE ID, bounty, and upvotes were considered when
assigning the severity rating. Then, the mode severity rating
for each vulnerability type was determined by assessing the
majority of severity ratings. Vulnerability types with less than
five vulnerabilities were identified as crucial for understand-
ing the data. As shown in Figure 1, the majority severity
rating of each vulnerability was taken into consideration.

• Broken Object Level Authorization (Critical: 3 and
Important: 2 out of 6 total, 71%)

• Broken Function Level Authorization (Critical: 1 out of
1 total, 100%) - Less than five vulnerabilities in this
type.

• Buffer Overflow (Critical: 1 and Important 1 out of 3
total, 67%) - Less than five vulnerabilities in this type.

• HTTP Request Smuggling (Critical: 2 and Important 2
out of 7 total, 57%)

• Improper Assets Management (Critical: 1 and Impor-
tant: 2 out of 5 total, 60%)

• Injection (Critical: 34 and Important: 29 out of 90 total,
70%)

• Broken User Authentication (Critical: 15 and Important:
24 out of 75 total, 52%)

C. Answering RQ3, Which OWASP Top 10 API Vulnerabili-
ties are captured in the publicly available bug bounty reports
for application programming interfaces?

The OWASP Top 10 API Vulnerabilities include Broken
Object Level Authorization, Broken User Authentication,
Excessive Data Exposure, Lack of Resource & Rate Lim-
iting, Broken Function Level Authorization, Mass Assign-
ment, Security Misconfiguration, Injection, Improper Assets
Management, and Insufficient Logging and Monitoring. To
represent the top vulnerabilities within the data, a system
was utilized to quantify and rank the bugs based on severity
ratings. The top 10 API vulnerabilities as assessed in this
research using publicly available bug reports are:

1) Injection (rank 467.25)
2) Excessive Data Exposure (rank 335.5)
3) Broken User Authentication (rank 263.25)
4) Broken Access Control (rank 254.25)
5) Cross-Site Scripting (rank 248.25)
6) Privilege Escalation (rank 140.75)
7) Cross-Site Request Forgery (CSRF) (rank 103.75)
8) Denial of Service (rank 72.5)
9) Server-Side Request Forgery (SSRF) (rank 56.75)

10) Security Misconfiguration (rank 45.25)
Our findings align with four of the OWASP Top 10

API Vulnerabilities: Injection, Excessive Data Exposure,
Broken User Authentication, and Security Misconfiguration.
Additionally, three more OWASP Top 10 API Vulnerabil-
ities were identified as within the top twenty vulnerability
types: Improper Assets Management, Lack of Resource &
Rate Limiting, and Broken Object Level Authorization. One
OWASP Top 10 API Vulnerability, Broken Function Level
Authorization, was identified as within the top twenty-five
vulnerability types. Unfortunately, two of the OWASP Top
10 API Vulnerabilities, Mass Assignment, and Insufficient
Logging and Monitoring, did not make the list.

VI. DISCUSSION

A. Validate Prior Research

We cross-validated and compared our findings on vulnera-
bility categories, number of occurrences, and severity levels
with the OWASP Top 10 API Weaknesses. By comparing
Table 2 with the OWASP Top 10, we found that only 8
out of the top 10 vulnerabilities have been identified in our
findings. Four of them are in our top 10 vulnerabilities and
the remaining four are in our top 25. To easily visualize the
difference between our finding and OWASP Top 10, we have
separated the table with sections as follows:

• OWASP Top 10 which were also in our top 10 findings.
• OWASP Top 10 which were identified in our findings

but not in the top 10.
• OWASP Top 10 which were not identified in our find-

ings.

B. THREATS TO VALIDATE

Due to limitations and the setup of the platforms, we were
unable to retrieve more data than we currently have, which

OWASP Top 10 Assessed Rank
Injection 1
Excessive Data Exposure 2
Broken User Authentication 3
Security Misconfiguration 10
Broken Object Level Authorization 13
Lack of Resource and Rate Limiting 17
Improper Assets Management 19
Broken Function Level Authorization 25
Mass Assignment NA
Insufficient Logging and Monitoring NA

TABLE III
OWASP TOP 10 API VULNERABILITIES WITH ASSESSED RANK

may make our findings slightly off. The OWASP Top 10
vulnerabilities were adopted from Knight [3] and are based
on the 2019 OWASP release, which may have changed since
then. Therefore, our validation with OWASP Top 10 might
show a large increase or decrease in occurrences that have
been identified by the newer release by OWASP. Addition-
ally, many bug reports are not disclosed to the public. During
the data collection phase, we found that some reports have
been closed to the public by request from the subject of that
vulnerability due to safety concerns. Furthermore, some bugs
that are applicable to APIs may have been missed due to our
filtering keywords.

C. BENEFITS

Our goal is to show researchers the gap between industry-
facing and academic-focused research. We hope to encourage
more research in the area of common vulnerabilities, specifi-
cally in terms of their causes and ways to prevent or counter
them.

We also want to warn developers about common vul-
nerabilities and their severity ranking, so they can pay
more attention to these possible vulnerabilities during their
development process. Additionally, we have shown them
what to look for during the testing and maintenance phase.

Finally, we aim to encourage instructors to focus more on
common vulnerabilities during their teaching process, so that
students who will become developers or researchers in the
future will have an understanding of these vulnerabilities and
possible solutions to fix or prevent them.

VII. CONCLUSIONS

We conducted a large-scale empirical study on bug bounty
reports related to API vulnerabilities and weaknesses. We
identified common critical and important API vulnerabilities
discovered in the bug bounty process using Microsoft’s
security update severity rating system. We also established
a method to determine the severity ranking of a vulnerabil-
ity by using the weighted values from the Department of
Defense Iron Bank in the Overall Risk Assessment Calcu-
lation [32]. We cross-validated our findings with OWASP
Top 10 to determine the change in occurrence of each
vulnerability. Our research can assist developers in identi-
fying real-world vulnerabilities and weaknesses, assigning
severity to common API vulnerabilities, and validating the

OWASP Top 10 for API vulnerabilities. Additionally, our
study provides a pathway for researchers to study and tackle
common vulnerabilities.

VIII. FUTURE WORK

In the future, we aim to collect more data on API vul-
nerabilities from various bug bounty platforms and compa-
nies. In addition to cross-validation with OWASP Top 10,
we will conduct validation with existing mapped research
publications on API vulnerabilities. We will also analyze
trends in API security based on the date range and number
of reports we collect. Furthermore, we will examine whether
public colleges and universities or public security courses are
teaching students about the causes of these vulnerabilities
and how to prevent them.

REFERENCES

[1] D. Freeze, “Cybercrime to cost the world $10.5 trillion annually
by 2025,” Cybercrime Magazine, 27-Apr-2021. [Online].
Available: https://cybersecurityventures.com/
cybercrime-damages-6-trillion-by-2021/. [Accessed:
29-Oct-2022].

[2] 21st Century Cures, vol. 114th. Congress, 2016.
[3] Alissa V. Knight, Playing With FHIR: Hacking and Securing FHIR

API Implementations. Knight Ink, Las Vegas, NV, 2021.
[4] APIsecurity.io, “Issue 74: Vulnerability in login with Facebook,

API security talks,” API Security News, 12-Mar-2020. [On-
line]. Available: https://apisecurity.io/issue-74-vulnerability-in-login-
with-facebook-api-security-talks/. [Accessed: 01-Oct-2022].

[5] E. Chickowski, “2018 sees API breaches surge with no relief
in sight,” Security Boulevard, 04-Dec-2018. [Online]. Available:
https://securityboulevard.com/2018/12/2018-sees-api-breaches-surge-
with-no-relief-in-sight. [Accessed: 01-Oct-2022].

[6] T. Brewster, “How hackers broke equifax: Exploiting a
patchable vulnerability,” Forbes, 14-Sep-2017. [Online]. Available:
https://www.forbes.com/sites/thomasbrewster/2017/09/14/equifax-
hack-the-result-of-patched-vulnerability/?sh=4ed3ca1a5cda.
[Accessed: 01-Oct-2022].

[7] OnePoll, API Security Survey: A Survey of 250 IT Managers and Se-
curity Professionals. Imperva Inc., San Mateo, CA, 2017. https://
www.slideshare.net/Imperva/api-security-survey.

[8] M. Bettendorf, “API growth rate continues to skyrocket in 2020 and
into 2021,” Postman Blog, 06-Apr-2022. [Online]. Available: https:
//blog.postman.com/api-growth-rate/. [Accessed: 01-
Oct-2022].

[9] R. Davis, “Insecure API cloud computing: The causes
and solutions,” ExtraHop, 23-Jan-2020. [Online]. Available:
https://www.extrahop.com/company/blog/2020/
insecure-apis-cloud-computing-cause-solutions/.
[Accessed: 01-Oct-2022].

[10] HackerOne, “#1 trusted security platform and hacker program,”
HackerOne. [Online]. Available: https://www.hackerone.
com/. [Accessed: 20-Oct-2022].

[11] Bugcrowd, “#1 crowdsourced cybersecurity platform,” Bugcrowd, 06-
Jul-2022. [Online]. Available: https://www.bugcrowd.com/.
[Accessed: 20-Oct-2022].

[12] Pentester, “Offensive InfoSec,” Pentester, 23-Aug-2022. [Online].
Available: https://pentester.land/. [Accessed: 20-Oct-
2022].

[13] Open Web Security Application Project (OWSAP), OWSAP API
Security Project, [Online] Available: https://owasp.org/
www-project-api-security/. [Accessed: 20-Oct-2022].

[14] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood, “Explor-
ing software security approaches in software development lifecycle: A
systematic mapping study,” Comput. Standards Interfaces, vol. 50, pp.
107–115, Feb. 2017.

[15] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “A systematic
mapping study of infrastructure as code research,” Inf. Softw. Technol.,
vol. 108, pp. 65–77, Apr. 2019.

[16] S. Zein, N. Salleh, and J. Grundy, “A systematic mapping study of
mobile application testing techniques,” J. Syst. Softw., vol. 117, pp.
334–356, Jul. 2016.

[17] F. A. Bhuiyan, M. B. Sharif, A. Rahma, “Security Bug Report Usage
for Software Vulnerability Research: A Systematic Mapping Study”
IEEE Access, Feb. 2021.

[18] HackerOne, “The Hacker-Powered Security Report - Who are Hackers
and Why Do They Hack”, June. 2018, p.23

[19] Aaron Yi Ding, De Jesus, G. Limon, M. Janssen, “Ethical hacking
for boosting IoT vulnerability management: a first look into bug
bounty programs and responsible disclosure”, Proceedings of the
Eighth International Conference on Telecommunications and Remote
Sensing - ICTRS ’19. Ictrs ’19. Rhodes, Greece: ACM Press: 49–55,
2019

[20] Definition of exploit, TrendMicro, [Online] Available:
https://www.trendmicro.com/vinfo/us/security/
definition/exploit

[21] Vulnerability (computing), Wikipedia, [Online] Available: https://
en.wikipedia.org/wiki/Vulnerability_(computing)

[22] Microsoft, “Security update severity rating system,” Microsoft.
[Online]. Available: https://www.microsoft.com/en-us/
msrc/security-update-severity-rating-system. [Ac-
cessed: 29-Oct-2022].

[23] Security Update Severity Rating System, [Online] Avail-
able: https://www.microsoft.com/en-us/msrc/
security-update-severity-rating-system

[24] S. Bigelow, “6 cloud vulnerabilities that can
cripple your environment” [Online]. Available:
https://www.techtarget.com/searchcloudcomputing/tip/6-cloud-
vulnerabilities-that-can-cripple-your-environment.

[25] Farhan A. Qazi, “Insecure Application Programming Interfaces (APIs)
in Zero-Trust Networks”, Capitol Technology University, Dec. 2021.

[26] J. A. Diaz-Rojas, J. O. Ocharan-Hernandez, J. C. Perez-Arriaga, X.
Limon, “Web API Security Vulnerabilities and Mitigation Mecha-
nisms: A Systematic Mapping Study”, 2021 9th International Confer-
ence in Software Engineering Research and Innovation (CONISOFT),
2021, p.207-218

[27] Information Technology Laboratory, National Vulnerability Database.
[Online]. Available: https://nvd.nist.gov/. [Accessed: 20-
Oct-2022].

[28] Common Vulnerabilities and Exposures. [Online]. Available: https:
//cve.mitre.org/. [Accessed: 20-Oct-2022].

[29] Craig Opie, Infosec_reports: web scraping tool, Github reposi-
tory, [Online] Available: https://github.com/CraigOpie/
infosec_reports

[30] Final Data, Google Sheet, [Online] Auvailable upon request:
https://docs.google.com/spreadsheets/d/
1ZKu8xTl5bDPMVredObPHrSF5rkej982l4xxl0hoXzP8/
edit?usp=share_link

[31] Anthony Peruma, NLP_example, Github repository, [Online] Avail-
able upon request: https://github.com/iSQARE-Lab/NLP_
Examples

[32] Iron Bank Value Stream, “Overall Risk Assessment (UNCLASSI-
FIED),” Platform One, 04-Apr-2022.

