
EXPLORING SECURITY VULNERABILITIES IN FHIR SERVER
IMPLEMENTATIONS: A CASE STUDY ON IBM’S FHIR SERVER IN THE CONTEXT

OF THE 21ST CENTURY CURES ACT

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

AUGUST 2024

By

Craig Opie

Thesis Committee:

Peter-Michael Seidel, Chairperson
Edoardo Biagioni
Dusko Pavlovic

Anthony Peruma

Keywords: 21st Century Cures Act Interoperability, FHIR Server Security, Healthcare API
Cybersecurity, SMART Authentication in Healthcare, Penetration Testing FHIR

Standards, Healthcare Data Compliance (HIPAA)

Copyright © 2024 by
Craig Opie

ii

To my loving wife,

Janelle,

whose unwavering support and selfless sacrifices have made this journey possible. Your
dedication to our family, despite the countless challenges, never ceases to amaze me. I am

grateful for your strength, patience, and the love we share every day.

To my amazing children,

Zoe, Adia, Kailani, and Carter,

who inspire me to be a better person and a more present parent. Your resilience and
understanding during this process has been invaluable, and I am committed to making up
for the missed moments. This work is a testament to the love, support, and encouragement

that each of you have provided.

Together, you are the driving force behind my every achievement, and I dedicate this paper
to you with all my love and gratitude.

iii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my academic advisor, Peter-Michael Seidel,
for his invaluable guidance, encouragement, and support throughout this research journey. His
extensive knowledge, expertise, and mentorship have been instrumental in shaping my work and
helping me achieve my academic goals.

My heartfelt appreciation goes out to my committee members for their insightful feedback,
constructive criticism, and unwavering support during this process. Their collective wisdom and
expertise have contributed significantly to the development and completion of this thesis.

I would also like to extend my sincerest thanks to my VA Counselor, Katherine Aresta, whose
dedication and assistance have been pivotal in making this educational endeavor possible. Her sup-
port has not only facilitated the financial aspect of my studies but has also provided the motivation
to strive for academic excellence.

Lastly, I would like to acknowledge my friends, colleagues, and the entire academic community
for their support, collaboration, and inspiration throughout this journey. Your contributions, both
directly and indirectly, have played an essential role in the success of this project.

iv

ABSTRACT

The 21st Century Cures Act[1], enacted in 2016, marked a pivotal shift in healthcare technology
by mandating interoperability and patient access to health data. Central to this transformation
is the utilization of Application Programming Interfaces (API), which play a critical role in the
seamless exchange of health information. The Interoperability and Patient Access final rule[9],
stemming from this Act, delineates a clear roadmap for healthcare data standards, with a particular
emphasis on Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR)[26] standards.
This rule also introduces the consumer app API rule, designed to enhance data exchange among
diverse health stakeholders. These advancements are instrumental in fostering interoperability and
actively engaging patients in their healthcare journey.

This thesis examines the pressing need for robust security measures in the rapid implementation
of FHIR servers, highlighted by the Act’s urgent compliance deadlines which may have inadver-
tently led to potential security compromises, with a particular emphasis on International Business
Machines’ (IBM) FHIR Server. This research is anchored on three pivotal questions:

1. Identifying common security vulnerabilities in FHIR server implementations, specifically IBM’s
FHIR Server, and understanding how these vulnerabilities vary across different deployment
configurations and usage scenarios.

2. Recommending best practices for enhancing the security of IBM’s FHIR Server based on
penetration testing outcomes, while addressing potential challenges in implementing these
enhancements.

3. Assessing the impact of FHIR server security vulnerabilities on compliance with healthcare
regulations such as Health Insurance Portability and Accountability Act (HIPAA) and General
Data Protection Regulation (GDPR), and evaluating the role of penetration testing in ensuring
regulatory compliance.

This investigation employs empirical security assessments to explore the vulnerabilities inherent
in current FHIR server deployments and proposes a series of best practices to mitigate these issues.
The findings highlight the critical need for incorporating robust security measures at the early
stages of FHIR server implementation to safeguard patient data and comply with legal standards.
By detailing the vulnerabilities and offering mitigation strategies, this thesis contributes to the
ongoing discussion on securing digital health infrastructures and underscores the importance of
rigorous security practices in the rapidly evolving healthcare technology landscape.

v

TABLE OF CONTENTS

Acknowledgments . iv
Abstract . v
List of Tables . xii
List of Figures . xiii
1 Introduction . 1

1.1 Background and Context . 1
1.1.1 From Paper Records to the Pre-Electronic Era (Before 1960) 1
1.1.2 Introduction and Adoption of EHR (1970s and 1980s) 1
1.1.3 Expansion and Challenges (1990s to Early 2000s) 2
1.1.4 Implementation of Standards (Early to Mid-2000s) 2

1.2 The 21st Century Cures Act . 2
1.2.1 Problem Statement . 2
1.2.2 Fragmented Data Systems and Independent Development 2
1.2.3 Lack of Common Standards and Information Blocking 3
1.2.4 Critical Need for Mandated Coordination and Standardized Interoperability . 3

1.3 Motivation for the Study . 3
1.3.1 Introduction to Interoperability Requirements (2017-2023) 4
1.3.2 Importance of Security in Rapid Developments 4
1.3.3 Focus on IBM’s FHIR Server and Its Relevance to the Research 4

1.4 Hypothesis . 5
1.5 Research Objectives . 5

1.5.1 Objective 1: Identify Common Security Vulnerabilities 5
1.5.2 Objective 2: Recommend Best Practices for Enhancing Security 6
1.5.3 Objective 3: Assess Impact on Compliance and Evaluate Penetration Testing 6

1.6 Significance of the Research . 6
1.6.1 Timeliness and Relevance in the Context of Legal Imperatives 6
1.6.2 Contribution to Securing FHIR Server Implementations 7
1.6.3 Broader Implications for Healthcare IT, Policy Compliance, and Patient Data

Security . 7
1.7 Overview of the Thesis Structure . 7

1.7.1 Chapter 2: Background and Context . 7
1.7.2 Chapter 3: Methodology . 8
1.7.3 Chapter 4: Implementation and Case Study 8
1.7.4 Chapter 5: Findings and Analysis . 8
1.7.5 Chapter 6: Discussion . 8
1.7.6 Chapter 7: Conclusion and Recommendations for Future Work 9

1.8 Disclosure of Findings . 9
1.9 Ethical Considerations for the Disclosure of Findings 10

1.9.1 Balancing Transparency and Security . 10
1.9.2 Criteria for Information Disclosure . 11
1.9.3 Responsibility Towards Affected Stakeholders 11

vi

2 Background and Context . 12
2.1 Historical Background and Evolution of HealthIT . 12

2.1.1 Pre-Electronic Era (Before 1960) . 12
2.1.2 Adoption of Electronic Health Records (1970s and 1980s) 13
2.1.3 Challenges of Early Digitization (1990s to Early 2000s) 13
2.1.4 Standardization Efforts (Early to Mid-2000s) 14

2.2 Interoperability Challenges Prior to the 21st Century Cures Act 15
2.2.1 Fragmented Data Systems . 15
2.2.2 Information Blocking and Lack of Standards 15

2.3 Legislative Response: The 21st Century Cures Act 16
2.3.1 Overview of the Act . 16
2.3.2 Ambiguities and Security Implications . 23

2.4 Introduction to the Role of the ONC and the Selection of Standards 25
2.4.1 Overview of ONC’s Authority Enhancement 25
2.4.2 Legislative Requirements for Standard Selection 25
2.4.3 HL7 FHIR . 25
2.4.4 Selection of HL7 FHIR Standards . 29
2.4.5 HL7 FHIR Implementation Challenges . 29

2.5 Security Concerns in Rapid API Integration . 32
2.5.1 Overview of API Security in Healthcare . 32
2.5.2 Common Vulnerabilities . 33

2.6 Case Study: Selection and Implementation of a FHIR Server 33
2.6.1 Requirements and Selection Criteria . 33
2.6.2 Evaluating Available Solutions . 34
2.6.3 Decision and Implementation of the IBM FHIR Server 35

2.7 Research Gaps and Theoretical Framing . 38
2.7.1 Related Works . 38
2.7.2 Identification of Research Gaps . 39
2.7.3 Theoretical Contributions . 40

2.8 Methodological Contributions . 40
2.8.1 Review of Previous Methodologies . 40
2.8.2 Justification of Methodological Choices . 41

2.9 Supporting Evidence and Benchmarks . 41
2.9.1 Evidence from Prior Studies . 41
2.9.2 Benchmarks for Comparison . 42

3 Methodology . 43
3.1 Introduction . 43
3.2 The HL7 FHIR Security Framework . 44
3.3 Security Challenges and Vulnerability Assessment . 45

3.3.1 Open Interface Vulnerabilities . 45
3.3.2 Unauthorized Data Access and Breaches . 45
3.3.3 Challenges in Maintaining Data Integrity . 46
3.3.4 Implications for Patient Privacy and Data Security 46
3.3.5 Consequences of Security Breaches . 46

3.4 Methodology for Empirical Investigation . 47

vii

3.4.1 Penetration Testing . 47
3.4.2 Qualitative Assessments . 47
3.4.3 Integration of Findings . 48

3.5 Expected Outcomes and Implications . 48
3.5.1 Expected Outcomes of Penetration Tests . 48
3.5.2 Anticipated Insights from Qualitative Assessments 49
3.5.3 Implications of the Findings . 50

3.6 Conclusion . 50
3.6.1 Summary of Methodological Approach . 50

4 Implementation and Case Study . 52
4.1 Introduction . 52
4.2 Configuration and Standards . 52

4.2.1 Security Protocols and Compliance . 52
4.2.2 TLS Implementation . 52
4.2.3 SMART Authentication and Role-Based Access Control (RBAC) Using OAuth

2.0 . 53
4.3 SMART on FHIR and RBAC Authentication Process 55

4.3.1 Detailed Process Flow . 55
4.3.2 Identifying Vulnerabilities and Implementing FHIR Protocols 58
4.3.3 Contradictions with HIPAA Privacy Requirements 59
4.3.4 Mitigating Contradictions . 59

4.4 Security Protocols Implementation . 60
4.4.1 Data Encryption . 60
4.4.2 Audit Trails and Monitoring . 61

4.5 Rationale for Feature Inclusion and Exclusion . 61
4.5.1 Exclusion of Advanced Anonymization . 61

4.6 Challenges and Solutions in FHIR Server Implementation 62
4.6.1 Security Compliance . 62
4.6.2 Legal and Regulatory Compliance . 62

4.7 Testing Environment . 62
4.8 Validation of Setup . 62

5 Findings and Analysis . 64
5.1 Introduction . 64
5.2 Generalized Security Vulnerabilities . 64

5.2.1 Rate Limiting and DDoS Vulnerability . 64
5.2.2 Authentication and Access Control Challenges 65

5.3 Client-Side Vulnerabilities . 65
5.3.1 Link Manipulation and Input Validation Issues 65
5.3.2 Input Sanitization Failures . 66

5.4 Cross-Domain Data Handling Issues . 67
5.4.1 Security Misconfigurations in Data Exchange 67
5.4.2 Clickjacking (Frameable Response) . 67

5.5 Conclusion . 68
6 Discussion . 69

6.1 General Findings and Regulatory Implications . 69

viii

6.2 Interpretation of Findings . 69
6.2.1 Compliance with Security Standards . 69
6.2.2 Shortcomings in Current Legislation and Standards 70

6.3 Recommendations for Improving Standards and Regulations 70
6.4 Enhancing Security Protocols . 71

6.4.1 Rate Limiting and DDoS Protections . 71
6.4.2 Input Validation and Sanitization . 71

6.5 Refining Client-Side Data Handling Standards . 71
6.5.1 Cross-Domain Data Sharing . 71
6.5.2 Clickjacking and Framebusting . 72

6.6 Addressing Ambiguities in HL7 FHIR API Documentation 72
6.6.1 Improving Documentation Clarity . 72

6.7 Recommendations for Documentation Enhancement 73
7 Conclusion and Recommendations for Future Work 74

7.1 Summary of Key Findings . 74
7.1.1 Recap of the Evolution of HealthIT . 74
7.1.2 Impact of the 21st Century Cures Act . 75
7.1.3 Findings from Testing IBM’s FHIR Server . 75

7.2 Discussion of Implications . 75
7.2.1 Integration of Security with Interoperability 75
7.2.2 Policy and Compliance . 76

7.3 Contributions to the Field . 76
7.3.1 Advancements in HealthIT Security . 76
7.3.2 Practical Security Measures . 77

7.4 Addressing the Limitations . 77
7.4.1 Scope of Testing . 77
7.4.2 Generalizability of Findings . 78

7.5 Recommendations . 78
7.5.1 For HealthIT Development . 78
7.5.2 Policy Recommendations . 80

7.6 Future Research Directions . 81
7.6.1 Advanced Security Assessments . 81
7.6.2 Incorporation of Emerging Technologies . 82

7.7 Concluding Remarks . 83
7.7.1 Summarize the Urgency and Relevance . 83
7.7.2 Final Thoughts . 83

7.8 Encouragement for Practical Implementation . 83
7.8.1 Guidelines for Implementation . 83
7.8.2 Encourage Adoption of Best Practices . 84

A Glossary of Terms . 86
B List of Acronyms . 88
C Equipment Specifications . 89
D Installation and Configuration of IBM FHIR Server with SMART Authentication 91

D.1 Directory Structure . 91
D.2 IBM FHIR Server Docker Configuration . 91

ix

D.3 Building and Running the FHIR Server . 92
D.4 Running SMART Keycloak . 92
D.5 Configuring Keycloak with SMART Authentication 92
D.6 Building and Running the Keycloak Configuration 93
D.7 Testing with Postman . 93

D.7.1 Postman Configuration . 93
D.7.2 Server Configuration for SMART Authentication 94

D.8 Creating and Testing Patient Resources . 100
D.8.1 OAuth 2.0 Configuration in Postman . 100
D.8.2 Create a Patient Resource . 100

E Setting Up And Configuring A Reverse Proxy . 107
E.1 Requirements . 107
E.2 Prepare Your Environment . 107
E.3 Configure SSL/TLS Certificates . 107
E.4 Configure Apache as a Reverse Proxy . 108
E.5 Verify and Monitor . 109

F Setting Up and Configuring Wazuh Manager . 110
F.1 Introduction . 110
F.2 Prerequisites . 110
F.3 Installation of Wazuh Manager . 110
F.4 Configuration Features . 111

F.4.1 Auditing of Commands . 111
F.4.2 Detecting Hidden Processes . 111
F.4.3 Network IDS Integration . 111
F.4.4 File Integrity Monitoring . 112

G Setting Up and Configuring Wazuh Agent . 113
G.1 Introduction . 113
G.2 Installation Procedure . 113

G.2.1 System Preparation . 113
G.2.2 Installing the Wazuh Agent . 113

G.3 Configuration of Features . 114
G.3.1 Command Auditing . 114
G.3.2 Hidden Process Detection . 114
G.3.3 Network IDS Integration . 114
G.3.4 File Integrity Monitoring . 114

H Penetration Testing . 115
H.1 Integrating Postman with BurpSuite Pro for Penetration Testing 115

H.1.1 Setting Up BurpSuite Proxy . 115
H.1.2 Configuring Postman to Use BurpSuite as a Proxy 115
H.1.3 Performing the Penetration Test . 115
H.1.4 Analyzing the Traffic with BurpSuite . 116
H.1.5 Generating and Exporting the Report . 116

H.2 Using OWASP ZAP for Penetration Testing . 116
H.2.1 Setting Up OWASP ZAP . 116
H.2.2 Configuring Your API Client to Use ZAP as a Proxy 117

x

H.2.3 Performing the Penetration Test . 117
H.2.4 Manual Testing and Active Scanning . 117
H.2.5 Reviewing Findings and Generating Reports 117

I IBM FHIR Server Penetration Test Report . 119
Bibliography . 120

xi

LIST OF TABLES

2.1 Key Sections of the 21st Century Cures Act . 17

xii

LIST OF FIGURES

2.1 Historical Evolution of HealthIT . 12

4.1 SMART on FHIR OAuth 2.0 Authentication Flow [17] 56

xiii

CHAPTER 1
INTRODUCTION

In an era where technology and healthcare increasingly intersect, the evolution of Health Infor-
mation Technology (HealthIT) represents a pivotal advancement in the management and delivery
of healthcare services. This thesis delves into the transformational journey from manual, paper-
based systems to sophisticated Electronic Health Records (EHR), underscored by the legislative
milestones that have aimed to standardize and secure this digital transition. At the heart of this
study is an exploration of the security implications inherent in these technological advancements,
particularly through the lens of the 21st Century Cures Act’s mandates for interoperability and
open data exchange across healthcare platforms [1].

For clarity and ease of reference, a Glossary of Terms and a List of Acronyms have been provided
in Appendix A and Appendix B, respectively. These appendices are intended to support readers in
navigating the technical terminology and acronyms used throughout this thesis.

1.1 Background and Context

HealthIT has significantly evolved from its humble beginnings to become a cornerstone of modern
healthcare management [26]. This transformation has paralleled advancements in technology and
changes in healthcare practices, shifting from manual paper records to automated electronic systems.

1.1.1 From Paper Records to the Pre-Electronic Era (Before 1960)

In the days before 1960, healthcare records were manually recorded on paper. This method was
not only time-consuming but also prone to errors, such as misinterpretations of handwriting or lost
documents. The process of retrieving information from these records was slow, making the sharing
of patient information between doctors and hospitals a cumbersome task. This often led to delays
in patient care and redundant tests that could have been avoided if previous health records had
been more accessible.

1.1.2 Introduction and Adoption of EHR (1970s and 1980s)

The 1970s and 1980s marked a pivotal shift as the healthcare industry began to adopt EHRs. Ini-
tially, these systems were simple, aimed mainly at digitizing paper-based records to reduce physical
storage and improve the basic retrieval of patient information. However, these early digital records
were developed by different providers using various formats, which meant that there was no consis-
tent way for systems to communicate with each other. This lack of standardization hindered the
broader adoption and utility of EHRs [26].

1

1.1.3 Expansion and Challenges (1990s to Early 2000s)

By the 1990s, the adoption of EHRs had increased, with more healthcare providers digitizing their
records. Yet, the issue of interoperability became a major hurdle. Many health systems operated
in isolation, using proprietary systems that did not communicate with one another. This lack of
interoperability meant that while a single hospital might have an efficient digital record system,
sharing those records with other hospitals or clinics could be problematic. Additionally, there were
significant concerns about how to securely store and protect this electronic data from unauthorized
access, given that comprehensive security standards were not yet in place [50, 71].

1.1.4 Implementation of Standards (Early to Mid-2000s)

Recognizing these challenges, the early to mid-2000s saw concerted efforts to standardize how EHRs
were used and secured. The introduction of the Meaningful Use Incentive Program by the U.S. gov-
ernment provided financial incentives for healthcare providers to use EHRs in ways that measurably
improved patient care [9]. Alongside this, the development of HL7 FHIR standards aimed to facili-
tate better data sharing and interoperability [26]. These standards helped define how information
should be structured and exchanged between systems, but achieving full interoperability across the
healthcare industry was still a work in progress. The landscape was set for more rigorous standards
and wider adoption, highlighting the need for comprehensive solutions that could bridge these gaps
effectively.

1.2 The 21st Century Cures Act

The 21st Century Cures Act was enacted to address the longstanding challenges of data interoper-
ability in healthcare by mandating standardized protocols for electronic health data exchange [1].
This Act is pivotal in promoting the use of interoperable EHR systems that can seamlessly com-
municate across different healthcare platforms, thereby enhancing patient care and streamlining
healthcare processes.

1.2.1 Problem Statement

The healthcare industry has long faced significant challenges with managing and exchanging elec-
tronic health information efficiently. Before the enactment of the 21st Century Cures Act, several
systemic issues had restricted the potential benefits of fully interoperable HealthIT [1].

1.2.2 Fragmented Data Systems and Independent Development

One of the primary obstacles to efficient healthcare delivery was the fragmented nature of data
systems. HealthIT systems were often developed independently by different healthcare providers,

2

leading to a patchwork of incompatible systems. Each hospital, clinic, or medical office might have
used its own software and data formats, making it difficult, if not impossible, to share critical patient
information seamlessly. This lack of connectivity not only complicated care coordination but also
increased the risks of errors and duplicated procedures, burdening both providers and patients [9].

1.2.3 Lack of Common Standards and Information Blocking

Compounding the problem of fragmented systems was the absence of common standards for EHRs.
Without a unified approach to data formatting and exchange protocols, each system essentially
spoke its own language, which other systems could not understand. Additionally, the practice
of information blocking, whereby entities intentionally or unintentionally prevent the sharing of
information, was prevalent. This could have been due to commercial interests, such as hospitals
wanting to safeguard their data to maintain a competitive edge, or due to concerns about data
security and patient privacy. Either way, these practices significantly hindered effective data sharing
and interoperability [1, 9].

1.2.4 Critical Need for Mandated Coordination and Standardized Interoper-
ability

The disjointed nature of HealthIT systems and the lack of mandated standards for interoperability
created a critical need for legislative and regulatory intervention. The 21st Century Cures Act
was conceived to address these issues by establishing clear mandates for the standardization of
HealthIT. The Act aimed to ensure that different HealthIT systems could communicate with each
other seamlessly, thereby enhancing the accessibility and quality of patient care. It recognized the
necessity of interoperability — that is, the ability of different IT systems and software applications
to communicate, exchange data, and use the information that has been exchanged in a meaningful
way. By promoting standardized data formats and secure data sharing practices, the Act sought
to overcome the barriers imposed by the previous lack of coordination and to streamline healthcare
processes across various platforms and providers [1].

1.3 Motivation for the Study

The implementation of the 21st Century Cures Act has introduced rigorous timelines and require-
ments for healthcare systems to upgrade their technology infrastructures to achieve full interop-
erability. This rapid modernization, while crucial for improving healthcare delivery and patient
outcomes, brings with it significant security challenges that must be addressed through thorough
research and development of robust security measures [1, 9].

3

1.3.1 Introduction to Interoperability Requirements (2017-2023)

Between 2017 and 2023, the healthcare sector has been mandated to adopt and fully integrate
systems that can seamlessly communicate and exchange patient data [1]. The Act specifies that
health information systems must not only be able to exchange data but also use the information
that has been exchanged effectively and securely [26]. This means that systems across different
healthcare providers must be standardized to use common formats for data, primarily through HL7
FHIR protocols, and must be equipped to handle this data responsibly and securely [25].

1.3.2 Importance of Security in Rapid Developments

As these systems become increasingly interconnected, the surface for potential cyber threats widens.
The rapid pace at which these systems are being developed and integrated significantly compounds
these risks. Quick development cycles can often overlook thorough security measures, which can lead
to vulnerabilities in systems that handle sensitive health information [2, 38]. Therefore, ensuring
the security of these systems is not just a technical requirement but a crucial safeguard to protect
patient privacy and maintain public trust in the healthcare system. Security measures need to be
integrated into the development process from the onset rather than bolted on as an afterthought,
making the role of security research pivotal in this context [37, 85].

1.3.3 Focus on IBM’s FHIR Server and Its Relevance to the Research

The selection of IBM’s FHIR Server as the focus of this research is not arbitrary but rather the
result of a careful evaluation of various open-source FHIR server solutions available in the market.
As the 21st Century Cures Act mandated healthcare systems to achieve full interoperability, it
became essential for organizations to choose FHIR server implementations that not only complied
with HL7 standards but also addressed the unique security and interoperability challenges posed
by modern healthcare environments.

In the landscape of open-source FHIR servers recommended by HL7, several options stood out
due to their robust features and widespread adoption. These included the Microsoft Azure FHIR
Server, HAPI FHIR Server, and IBM’s FHIR Server, among others. Each of these solutions offered
distinct advantages in terms of scalability, compliance, and integration capabilities. However, IBM’s
FHIR Server was selected for this research due to several key factors:

• Widespread Use and Community Support: IBM’s FHIR Server has gained significant
traction within the healthcare community, particularly among institutions looking for a scal-
able and open-source solution that can be customized to meet specific organizational needs.

• Compliance and Integration: IBM’s FHIR Server adheres strictly to HL7 standards and
is designed to integrate seamlessly with other healthcare information systems. Its compliance

4

with industry regulations, such as HIPAA and GDPR, makes it a strong candidate for research
focused on security and regulatory adherence.

• Security Features: Among the available options, IBM’s FHIR Server is noted for its com-
prehensive security framework, which includes support for OAuth 2.0, data encryption, and
detailed audit logging. These features are crucial for maintaining the integrity and confiden-
tiality of health data, making it an ideal subject for a security-focused study.

• Open-Source Flexibility: As an open-source project, IBM’s FHIR Server allows for exten-
sive customization and provides the flexibility needed to conduct in-depth security analysis.
The availability of source code and detailed documentation facilitates a thorough examination
of the server’s vulnerabilities and the implementation of potential security enhancements.

By focusing specifically on IBM’s FHIR Server, this research aims to leverage these strengths
while addressing the unique security challenges it presents, particularly in how it configures and
secures data exchanges [38]. This analysis not only contributes to the security of IBM’s imple-
mentations but also offers valuable insights for other healthcare organizations using FHIR-enabled
systems, thereby advancing the broader efforts to secure health data exchanges [12, 55].

1.4 Hypothesis

The central hypothesis of this research is: The security framework and implementation protocols
of HL7 FHIR API ensure robust protection and privacy of health data across various healthcare
environments. This hypothesis guides the research focus towards evaluating the effectiveness of
HL7 FHIR security measures and their compliance with regulatory requirements such as HIPAA
and GDPR.

1.5 Research Objectives

This research aims to validate the hypothesis by addressing the following objectives:

1.5.1 Objective 1: Identify Common Security Vulnerabilities

The first objective is to identify common security vulnerabilities in FHIR server implementations,
with a specific focus on IBM’s FHIR Server [25]. This involves an extensive analysis of how these
vulnerabilities manifest across various deployment configurations and usage scenarios [12]. By sim-
ulating different environments and operational contexts, the research aims to uncover the most
prevalent security flaws that could compromise the integrity and confidentiality of patient data [55].

5

1.5.2 Objective 2: Recommend Best Practices for Enhancing Security

Following the identification of key vulnerabilities, the second objective is to develop and recommend
best practices for enhancing the security of IBM’s FHIR Server. This will be based on comprehensive
penetration testing outcomes, where various attack vectors and security breaches are simulated
to test the resilience of the system [55]. The goal is to not only patch current vulnerabilities
but also to address potential challenges in implementing these security enhancements, such as
compatibility with existing systems, user experience implications, and the administrative burden.
These recommendations will be designed to be actionable, providing clear guidance for developers
and system administrators to enhance their security protocols effectively [11, 12].

1.5.3 Objective 3: Assess Impact on Compliance and Evaluate Penetration
Testing

The third objective explores the broader implications of identified security vulnerabilities on com-
pliance with healthcare regulations, such as Health Insurance Portability and Accountability Act
(HIPAA) in the United States and the GDPR in Europe. This part of the research will evaluate
how security flaws can affect an organization’s ability to comply with these laws, potentially leading
to legal and financial repercussions [14, 77]. Furthermore, this objective includes a critical evalua-
tion of the role of penetration testing in maintaining regulatory compliance, offering insights into
how regular security assessments can help healthcare providers not only meet but exceed regulatory
requirements, thereby safeguarding patient data more effectively [38].

1.6 Significance of the Research

This thesis explores the critical aspects of security within the framework of the 21st Century Cures
Act, emphasizing the urgency and relevance of addressing these issues in the rapidly advancing field
of HealthIT [1]. The research is particularly significant given the legislative requirements for swift
and comprehensive adoption of interoperability standards [1, 9].

1.6.1 Timeliness and Relevance in the Context of Legal Imperatives

The research is timely because it coincides with crucial deadlines for the implementation of the 21st
Century Cures Act, which mandates significant advancements in HealthIT by specific dates [1, 9].
These legal imperatives require healthcare systems across the United States to adopt interoperable
EHR systems that comply with the HL7 FHIR standards [26]. This study provides insights into
the security aspects of these implementations, a factor that is often overshadowed by the push for
functionality and compliance but is no less critical. Addressing these concerns head-on helps ensure
that the rapid changes being made do not compromise the security and integrity of patient data [38].

6

1.6.2 Contribution to Securing FHIR Server Implementations

A major contribution of this research is the enhancement of security measures for FHIR server
implementations [26]. FHIR servers are central to the new landscape of healthcare technology, fa-
cilitating data exchange across diverse platforms and providers [25]. By identifying vulnerabilities
in these systems, specifically within IBM’s widely used FHIR Server, and recommending robust
security practices, this thesis aids in fortifying a key component of modern HealthIT infrastruc-
tures [12]. The practical outcomes include developing a set of best practices that can be adopted
not only by institutions using IBM’s FHIR Server but also by others within the healthcare sector,
thereby improving the overall security posture of health data systems [55].

1.6.3 Broader Implications for Healthcare IT, Policy Compliance, and Patient
Data Security

Beyond the technical aspects, this research has profound implications for healthcare IT management,
policy compliance, and the security of patient data. By ensuring that FHIR servers are secure,
the research supports healthcare providers’ ability to meet HIPAA and GDPR compliance more
effectively, reducing the risk of data breaches that could lead to financial penalties and loss of
patient trust [14, 77, 38]. Furthermore, the study’s outcomes contribute to shaping policies around
the deployment of secure, interoperable healthcare technologies, advocating for a balanced approach
that considers both innovation and security [1]. This holistic view supports the advancement of
healthcare IT in a way that protects patient data while fostering technological advancements that
can improve patient outcomes and system efficiencies.

1.7 Overview of the Thesis Structure

This thesis is structured to comprehensively address the challenges and findings related to the
security of FHIR server implementations, particularly in the context of the 21st Century Cures
Act [1]. Each chapter is designed to build upon the previous one, systematically exploring the
multifaceted issues surrounding healthcare interoperability and security. Below is a brief overview
of the subsequent chapters:

1.7.1 Chapter 2: Background and Context

This chapter provides an extensive review of existing literature related to the evolution of HealthIT,
with a focus on EHR and the impact of legislative changes on health data interoperability. It
examines previous studies on the implementation challenges of the 21st Century Cures Act, the
development and adoption of FHIR standards [26], and the broader context of data security in
HealthIT [2, 8]. This review sets the foundation for understanding the current landscape of health

7

data interoperability, the necessity of stringent security measures [38], and the gaps that this research
aims to fill.

1.7.2 Chapter 3: Methodology

The methodology chapter details the approaches and techniques employed to investigate the security
vulnerabilities of IBM’s FHIR Server [25]. It describes the setup of the testing environment, the
criteria for selecting IBM’s FHIR Server, and the penetration testing tools and procedures used [70,
69]. This chapter also explains the rationale behind using automated and manual testing methods,
and how these methods were integrated with theoretical models to assess compliance with healthcare
regulations such as HIPAA and GDPR [12, 14, 77, 38].

1.7.3 Chapter 4: Implementation and Case Study

Implementation and Case Study provides an in-depth exploration of the practical implementation
of FHIR Servers, with a specific focus on IBM’s FHIR Server. This chapter details the adherence
to HL7 FHIR API standards, the 21st Century Cures Act, and HIPAA regulations, emphasizing
the importance of robust security protocols, including Transport Layer Security (TLS), SMART
authentication, and role-based access control (RBAC). It addresses the challenges of maintaining
compliance with evolving legal and regulatory requirements and presents a flexible security model
designed to adapt to these changes. The chapter also discusses the rationale behind the inclusion of
specific security features and the exclusion of advanced anonymization techniques. By describing the
testing environment and validation procedures, this chapter highlights the critical measures taken
to ensure the secure and efficient operation of FHIR Servers, ultimately supporting the overarching
goal of safeguarding sensitive health information in a complex and dynamic healthcare landscape.

1.7.4 Chapter 5: Findings and Analysis

This chapter presents the findings from the security tests conducted on the IBM FHIR Server [15]. It
categorizes the vulnerabilities discovered during the testing phases and discusses their implications
on compliance and patient data security [12, 39, 10]. Each vulnerability is analyzed in depth to
understand its potential impact on the overall security of the FHIR Server [55]. The chapter further
explores the effectiveness of existing security measures and the adequacy of IBM’s implementation
in safeguarding against potential threats [25].

1.7.5 Chapter 6: Discussion

The discussion chapter critically analyzes the security vulnerabilities identified during the FHIR
Server implementation assessment, drawing parallels with recognized security frameworks such as

8

the OWASP API Top 10 and compliance with regulatory requirements like HIPAA, the 21st Cen-
tury Cures Act, GDPR, and HL7 FHIR API standards. The chapter interprets these findings,
emphasizing the significant risks posed by client-side processing vulnerabilities and cross-domain
data handling issues, which are not thoroughly addressed by current standards. It underscores the
gaps in existing legislation, highlighting the need for these frameworks to evolve in response to
modern cybersecurity threats. Recommendations for enhancing both the HL7 FHIR API standards
and legislative measures, including the incorporation of comprehensive security audits and specific
guidelines for mitigating client-side vulnerabilities, are proposed to bridge these gaps. The chapter
advocates for standardized security practices, robust traffic management protocols, and detailed
input validation to enhance the security of FHIR Server implementations, ultimately contributing
to a more secure and compliant healthcare IT environment.

1.7.6 Chapter 7: Conclusion and Recommendations for Future Work

This chapter summarizes the research findings on the security of IBM’s FHIR Server within the
framework of the 21st Century Cures Act, emphasizing the broader implications for HealthIT sys-
tems. The research identified significant vulnerabilities in IBM’s FHIR Server, stressing the ne-
cessity for integrating comprehensive security protocols to safeguard sensitive health information
and maintain compliance with regulations such as HIPAA and GDPR. The chapter proposes action-
able recommendations for enhancing security in HealthIT systems, including regular security audits,
stronger authentication mechanisms, and the incorporation of advanced encryption practices. Addi-
tionally, it underscores the importance of policy updates to address modern cybersecurity challenges
and suggests future research directions, such as exploring blockchain technology for improved data
integrity and transparency. Ultimately, this chapter calls for a proactive approach to HealthIT
security, advocating for continuous improvement and adaptation to emerging threats, ensuring the
safe and efficient exchange of health data.

1.8 Disclosure of Findings

The disclosure of the detailed findings from this research is scheduled for July 1st, 2025. On
this date, the full report, titled IBM-FHIR Deep Scan Report, will be made publicly available
at https://gitlab.com/craigopie/fhir-findings. This report will provide a comprehensive
analysis of the security vulnerabilities identified in IBM’s FHIR Server.

The decision to publicly disclose these findings was made in alignment with the principles of
responsible vulnerability disclosure. This approach allows sufficient time for Linux For Health and
other stakeholders to address the identified issues, implement necessary security measures, and
ensure that their systems are fortified against potential exploitation. By setting the disclosure date
well in advance, this research upholds the ethical responsibility to protect healthcare infrastructure

9

while promoting transparency and collaboration within the cybersecurity community.
The report will include:

• A detailed account of the vulnerabilities discovered during the security assessment of IBM’s
FHIR Server.

• Contextual analysis of the potential impact of these vulnerabilities on healthcare systems.

• An overview of the security testing methodologies used in this research, including both auto-
mated and manual testing procedures.

This disclosure aims to contribute to the ongoing efforts to secure HealthIT systems by providing
actionable insights that can be used by developers, system administrators, and healthcare providers
to enhance the security of their FHIR implementations. It also serves as a call to action for the
broader healthcare technology community to prioritize security in the design and deployment of
interoperable health data systems.

By sharing these findings publicly, this research seeks to foster an environment of openness and
cooperation, where security challenges can be addressed collectively, leading to a safer and more
reliable healthcare infrastructure.

1.9 Ethical Considerations for the Disclosure of Findings

The decision to release the detailed findings of this research on July 1st, 2025, was made with
careful consideration of the ethical implications involved in disclosing vulnerabilities in critical
healthcare infrastructure. The timing and content of the disclosure were governed by the principles
of responsible research and the potential impact on patient safety, public trust, and the ongoing
efforts to secure HealthIT systems.

1.9.1 Balancing Transparency and Security

One of the primary ethical dilemmas in cybersecurity research is balancing the need for transparency
with the imperative to protect sensitive information from misuse. While the open dissemination
of research findings is fundamental to the advancement of knowledge, it also poses risks when the
information involves vulnerabilities that could be exploited by malicious actors. In the context of
this research, the vulnerabilities identified in IBM’s FHIR Server are of particular concern due to
the server’s widespread adoption in healthcare environments. The disclosure of these vulnerabilities,
if made prematurely or without sufficient safeguards, could lead to significant risks, including data
breaches, unauthorized access to patient information, and disruptions in healthcare services.

To mitigate these risks, a decision was made to delay the public release of the findings until
July 1st, 2025. This delay allows a responsible period during which affected parties can address

10

the identified vulnerabilities, implement necessary security measures, and ensure that patient data
remains protected. The timing of the release aligns with the ethical responsibility to minimize
potential harm while still contributing to the broader goal of improving healthcare security through
transparency and shared knowledge.

1.9.2 Criteria for Information Disclosure

In determining what information to include in the final public report, careful consideration was given
to the type and specificity of the details disclosed. The goal was to provide enough information
to facilitate meaningful improvements in security practices without exposing details that could be
directly leveraged in an attack.

The ethical considerations also extended to the inclusion of recommendations for mitigating
identified risks. The public report will emphasize actionable steps that can be taken by organizations
using IBM’s FHIR Server to secure their systems effectively. By focusing on preventive measures
and best practices, the report aims to empower healthcare providers to strengthen their defenses
without compromising sensitive information that could otherwise be weaponized.

1.9.3 Responsibility Towards Affected Stakeholders

This research recognizes the ethical obligation to protect not only the technical infrastructure but
also the individuals and organizations that rely on it. As such, prior to the public disclosure, Linux
For Health and other relevant stakeholders were notified of the findings, providing them with the
opportunity to address the issues identified. This proactive engagement ensures that the release
of information does not catch affected parties unprepared, reducing the likelihood of harm and
fostering a collaborative approach to resolving security challenges.

In conclusion, the release strategy for this research is guided by a commitment to responsible
disclosure, prioritizing patient safety and data security while contributing to the collective effort
to enhance the security of HealthIT systems. By striking a balance between transparency and
protection, this approach seeks to uphold the ethical standards of cybersecurity research and support
the ongoing improvement of healthcare technology infrastructure.

11

CHAPTER 2
BACKGROUND AND CONTEXT

As the nexus between healthcare and technology continues to evolve, the integration and se-
curity of HealthIT have emerged as pivotal areas of concern and innovation. This chapter exam-
ines the progression of HealthIT from its rudimentary implementations in the pre-electronic era to
the sophisticated, interconnected systems of today, driven by advancements in Electronic Health
Records (EHR) and legislative mandates such as the 21st Century Cures Act [1]. This background
and context explores the historical challenges of digitalization in healthcare, the subsequent efforts
at standardization, and the persistent hurdles to achieving seamless interoperability amidst these
technological upgrades. By dissecting the evolution of HealthIT systems, this chapter sets the
groundwork for understanding the current landscape of health data management, the critical role
of the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard, and the
overarching security implications that these technologies entail in the context of modern healthcare
delivery. This exploration not only highlights the transformative impact of legislative actions but
also underscores the ongoing need for robust security measures to protect sensitive health informa-
tion in an increasingly digital age.

To understand the current complexities and the advanced state of HealthIT, it is crucial to look
back at its historical development starting from the manual systems that were once widespread.

2.1 Historical Background and Evolution of HealthIT

Figure 2.1 provides an overview of the historical evolution of HealthIT, highlighting key milestones
and developments.

Figure 2.1: Historical Evolution of HealthIT

2.1.1 Pre-Electronic Era (Before 1960)

Before the 1960s, the healthcare industry relied primarily on manual paper records for storing and
managing patient data. This method was filled with limitations, primarily due to the physical
nature of paper. Records could be easily lost, damaged, or misfiled, leading to inefficiencies in

12

patient care and medical research. Accessing historical patient data was a time-consuming process,
severely hindering the ability to provide timely and coordinated care. This era underscored the
need for a more reliable and efficient way to handle health information.

2.1.2 Adoption of Electronic Health Records (1970s and 1980s)

The 1970s to 1980s marked the beginning of a significant shift with the introduction of EHR. Health
institutions slowly transitioned from paper to digital records. Despite this progress, the adoption
faced numerous challenges. The main barriers to adoption was high costs and complexity of imple-
menting these rudimentary systems. Large hospitals and research institutions began implementing
their own systems, but there was a lack of standardization. Each provider often had their own
unique system, which meant that even basic data could not be easily shared or compared across
different platforms or locations. This lack of uniformity not only complicated data management
within healthcare facilities but also posed significant barriers to the secure and efficient exchange of
information.

2.1.3 Challenges of Early Digitization (1990s to Early 2000s)

The 1990s to early 2000s marked a significant phase in the digitization of healthcare records, char-
acterized by the initial wide-spread adoption of EHRs. During this time, healthcare institutions
began transitioning from paper-based systems to digital records, driven by the potential for im-
proved data management and patient care. However, the early EHR systems were predominantly
proprietary and operated in silos, lacking the necessary interoperability to communicate and share
information across different platforms and organizations. This period highlighted the critical need
for interoperable systems that could exchange information seamlessly to enhance healthcare delivery
and outcomes.

A pivotal legislative development during this era was the enactment of the Health Insurance
Portability and Accountability Act (HIPAA) in 1996 [77]. HIPAA established essential standards
for the protection of sensitive patient information and laid the groundwork for the secure and stan-
dardized handling of electronic health data. The Act introduced comprehensive rules for the privacy
and security of electronic protected health information (ePHI), which required healthcare organiza-
tions to implement strict administrative, physical, and technical safeguards. These regulations were
aimed at preventing unauthorized access to patient data and ensuring the confidentiality, integrity,
and availability of health information.

HIPAA also played a crucial role in fostering the standardization of electronic transactions and
code sets, which was a significant step towards improving the efficiency and reliability of health
information exchange. By mandating uniform standards for electronic data interchange, HIPAA
helped reduce the variability and complexity associated with the handling of health information
across different systems and entities.

13

Despite the regulatory framework provided by HIPAA, early EHR systems continued to face
significant challenges in achieving interoperability. The proprietary nature of these systems meant
that data could not be easily shared or integrated across different platforms, leading to persistent
inefficiencies and complexities in medical practices. Healthcare providers often had to navigate
multiple, incompatible systems, which not only hindered the seamless exchange of information but
also increased the administrative burden and potential for errors.

This era underscored the urgent need for interoperable systems that could facilitate the se-
cure and efficient exchange of health information. The absence of interoperability perpetuated
the inefficiencies of isolated data systems and highlighted the necessity for further legislative and
technological efforts to promote a more integrated and cohesive HealthIT infrastructure [77, 1].

The foundational impact of HIPAA set the stage for subsequent initiatives aimed at addressing
the ongoing challenges in health information management and interoperability, paving the way for
future advancements and legislative responses.

2.1.4 Standardization Efforts (Early to Mid-2000s)

The early to mid-2000s marked a significant period in the drive towards standardization in HealthIT,
characterized by pivotal initiatives aimed at fostering a cohesive and interoperable ecosystem. Cen-
tral to these efforts was the introduction of the "Meaningful Use Incentive Program" under the
Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009 [84]. This
federal program was designed to promote the adoption and meaningful use of EHRs by providing
financial incentives to healthcare providers who demonstrated the effective utilization of certified
EHR technology.

The Meaningful Use program outlined specific criteria that EHR systems had to meet to qualify
for incentives. These criteria were structured in stages, each with progressively stringent require-
ments aimed at ensuring the comprehensive capture, exchange, and use of health information to
improve patient care. The first stage focused on data capture and sharing, the second on advancing
clinical processes, and the third on improving patient outcomes through data analysis and more
sophisticated health information exchanges.

In tandem with the Meaningful Use program, the development and adoption of HL7 standards
became a cornerstone for achieving interoperability. HL7 provided a framework for the exchange, in-
tegration, sharing, and retrieval of electronic health information across different healthcare systems.
Notably, the HL7 standards, particularly the FHIR framework, were instrumental in addressing the
complexities of data exchange and enhancing the functional capabilities of EHRs.

Together, these standardization efforts underscored the industry’s move towards a more unified
and efficient HealthIT infrastructure. By incentivizing the adoption of standardized EHRs and
establishing robust data exchange protocols, the Meaningful Use program and HL7 standards played
crucial roles in laying the groundwork for the modern, interconnected health information systems

14

we see today [19, 26, 71].
Despite these advancements, achieving seamless interoperability remained a significant challenge,

as various systems struggled to communicate effectively. This period set the stage for further
legislative and technological responses aimed at overcoming these hurdles, ultimately leading to the
enactment of the 21st Century Cures Act to address persistent issues in HealthIT standardization
and interoperability.

2.2 Interoperability Challenges Prior to the 21st Century Cures
Act

2.2.1 Fragmented Data Systems

The HealthIT landscape prior to the 21st Century Cures Act was markedly characterized by frag-
mented and isolated systems that lacked compatibility with one another. This fragmentation was
largely the result of independent development paths taken by healthcare providers, each crafting
their systems based on individual needs and specifications without a unified guiding standard. Such
a scattered environment made it extremely difficult for these systems to communicate or share infor-
mation effectively. The direct consequence was a healthcare infrastructure where critical data could
not be accessed across platforms, leading to inefficiencies in patient care, delays in medical response,
and increased administrative burdens. The lack of interoperability not only affected the continuity
and quality of care but also impeded the overall advancement of health services by restricting the
potential for integrated health data analytics.

2.2.2 Information Blocking and Lack of Standards

Compounding the issue of fragmented systems was the prevalent practice of information blocking,
intentional or otherwise, by various entities within the healthcare ecosystem. Information blocking
occurred when parties, either healthcare providers or IT vendors, obstructed information sharing
to guard their data and systems, often to maintain competitive advantages or due to the high costs
associated with data sharing under proprietary formats. This practice was facilitated by the absence
of universal standards, which would have dictated how information should be stored, shared, and
secured. Without these standards, each entity could determine its own protocols, many of which
were incompatible with others, leading to significant barriers in health data exchange.

These barriers were not merely technical but also practical, affecting the day-to-day operations
of healthcare services. For patients, this often meant incomplete or delayed access to their medical
histories, whereas for providers, it led to challenges in obtaining a holistic view of a patient’s medical
profile. The lack of standards also posed serious concerns for patient safety and care coordination, as
vital data might not be available where and when it was needed most. Moreover, this environment

15

made it difficult to implement broad-scale improvements in healthcare efficiency and effectiveness,
such as population health initiatives or real-time disease surveillance.

The issues of fragmented systems and information blocking underscored a critical need for leg-
islative and technological reforms aimed at establishing a more cooperative and interconnected
healthcare infrastructure. The passage of the 21st Century Cures Act was a direct response to these
challenges, mandating a move towards standardization and interoperability, fundamentally aimed at
enhancing the quality of health care delivery and making patient data accessible and secure across
the continuum of care[1].

2.3 Legislative Response: The 21st Century Cures Act

2.3.1 Overview of the Act

The 21st Century Cures Act, enacted in December 2016, is a significant legislative effort aimed at
modernizing and streamlining healthcare information processes across the United States. It ad-
dresses critical issues within the HealthIT infrastructure, particularly focusing on the enhancement
of interoperability and the facilitation of easier patient data access. Its adoption signifies a piv-
otal shift towards a more integrated health system, aiming to reduce operational silos and improve
outcomes through enhanced data exchange and system communications. This legislation seeks to
promote interoperability, combat information blocking, and facilitate the integration and accessi-
bility of health information systems, ensuring seamless data flow across the health ecosystem [1].
However, the Act introduces new terminology and definitions which may not directly align with
those established in existing interoperability standards, potentially creating challenges in harmoniz-
ing federal mandates with HealthIT practices.

Table 2.1 summarizes the key sections of the 21st Century Cures Act, highlighting their titles
and short descriptions:

Interoperability Requirement

The 21st Century Cures Act significantly broadens the scope of interoperability among HealthIT
systems [80]. This section of the Act introduces key concepts of "secure, effortless exchange" and
"comprehensive access," shifting the traditional focus from merely technical interoperability to also
include ease of use and robust security as core components of interoperability [80].

To meet these enhanced requirements, HealthIT systems must implement the following technical
capabilities:

1. User-Centered Design: Systems are required to incorporate user-centered design principles
that make technology accessible and straightforward for all users, regardless of their technical
skills. This means interfaces must be intuitive, and interactions should minimize the cognitive
load on users, thereby making the exchange and access of information as effortless as possible.

16

Section Title Description
Sec. 3001 Interoperability Requirements Establishes requirements for interoperability

of health information technology, ensuring
seamless data exchange between systems.

Sec. 3060(A) Clarifying Medical Software
Regulation

Clarifies the definition of information block-
ing and outlines exceptions for practices that
are reasonable and necessary.

Sec. 4001 Information Blocking Prohibits practices that interfere with the ac-
cess, exchange, or use of electronic health in-
formation, commonly referred to as informa-
tion blocking.

Sec. 4003 Trusted Exchange Framework
and Common Agreement

Directs the establishment of a trusted ex-
change framework and common agreement to
improve data sharing across networks.

Sec. 4006 Patient Access to Health In-
formation

Mandates that patients have electronic access
to their health information without special ef-
fort or use of proprietary technology.

Sec. 4007 Health Information Technol-
ogy Advisory Committee

Establishes a committee to provide recom-
mendations on policies and standards for
health information technology.

Sec. 4008 Conditions and Maintenance
of Certification for Health IT

Sets conditions for the certification and main-
tenance of health IT products to ensure com-
pliance with interoperability standards.

Table 2.1: Key Sections of the 21st Century Cures Act

17

2. Advanced Security Protocols: To address the requirement for secure data exchange,
HealthIT systems must integrate advanced security protocols. This includes the implementa-
tion of OAuth 2.0 for secure, token-based user authentication and the use of comprehensive
encryption methods to ensure data integrity and confidentiality during transmission.

3. Seamless Data Exchange Mechanisms: Systems must support seamless, real-time data
exchanges that allow healthcare providers to access patient information promptly when needed,
without any additional steps that could hinder the efficiency of care delivery. This involves
adopting or upgrading to support RESTful API technologies that facilitate more dynamic
data interactions and interoperability between disparate systems.

The shift to emphasize ease of use and security entails a holistic approach to system design and
operation, where the end-user experience and data protection are paramount. This redefinition of
interoperability necessitates:

1. Reevaluation of Existing Systems: Current HealthIT systems might need significant up-
dates or redesigns to align with the new standards set by the Cures Act [80]. This includes
enhancing user interfaces and updating backend systems to support advanced security mea-
sures.

2. Integration of Interdisciplinary Expertise: Successful implementation of these interop-
erability standards will require collaboration between IT professionals, usability experts, and
clinical staff to ensure that systems are both technically proficient and tailored to the needs
of end-users.

3. Continuous Education and Training: As systems become more integrated and user-
focused, ongoing training for healthcare providers and administrative staff will be essential to
maximize the potential benefits of enhanced interoperability.

By expanding the definition of interoperability to include ease of use and security, the Cures Act
not only enhances the functionality of HealthIT systems but also aligns them more closely with the
needs of end-users and the overarching goals of healthcare delivery [80].

Information Blocking Requirement

The Cures Act specifically targets practices known as information blocking, defining and prohibiting
activities that interfere with, prevent, or materially discourage the access, exchange, or use of
electronic health information [81]. This mandate introduces terminology and requirements that may
not align perfectly with existing healthcare regulations and interoperability frameworks, potentially
complicating compliance efforts [81].

To comply with these new directives, HealthIT developers and providers must implement several
technical measures:

18

1. Data Sharing by Default: Systems must be designed to enable data sharing as the de-
fault operation. This includes the elimination of unnecessary barriers to data access and
exchange, such as complex user permissions or restrictive data silos that could be construed
as information blocking [81].

2. Transparent Reporting Mechanisms: Developers must integrate mechanisms that allow
for the transparent reporting of any instances of information blocking. This involves creating
logs and audit trails that document all access and sharing activities, which can be reviewed
by regulators or auditors to ensure compliance [81].

3. Resolution Processes: There should be clear processes in place to rectify any identified
instances of information blocking. This includes technical solutions to modify system behavior
and operational policies that ensure quick resolution of blocking issues [81].

Implementing these requirements necessitates a delicate balance:

1. Accessibility vs. Security: While systems are required to facilitate easier data access, this
must not compromise security and privacy. Developers need to ensure that data accessibility
features do not inadvertently expose sensitive information, adhering to both the new mandates
and existing privacy laws such as the Health Insurance Portability and Accountability Act
(HIPAA).

2. Interoperability Challenges: Ensuring interoperability between diverse HealthIT systems,
while avoiding information blocking, requires the adoption of standardized data formats and
exchange protocols. This may require significant adjustments for systems that previously used
proprietary or non-standard formats.

3. Technical Upgrades: Many existing systems will require technical upgrades to meet the new
requirements. This includes enhancing API capabilities to ensure they facilitate both secure
and straightforward data exchange, and implementing robust security measures to protect
data integrity and confidentiality.

By focusing on eliminating information blocking, the Cures Act not only seeks to enhance the
availability and accessibility of health data but also imposes significant technical and operational
challenges that require careful implementation to balance accessibility with security and privacy
concerns [81].

Leveraging EHRs to Improve Patient Care

The 21st Century Cures Act emphasizes the strategic use of Electronic Health Records (EHRs) to
enhance patient care by facilitating better data transmission and interoperability [82]. This section
mandates that EHR systems must efficiently interface with certified health data registries and other

19

EHR systems to improve clinical outcomes by enabling more streamlined data sharing across various
healthcare platforms [82]. The mandated capabilities include:

1. Interoperability Enhancements: EHR systems must support seamless communication
with different HealthIT systems through standardized APIs, ensuring secure and efficient
data exchange [82].

2. Data Sharing Protocols: EHRs must facilitate both push and pull transactions for patient
data, allowing healthcare providers to send and receive information as needed [82].

3. Real-time Data Exchange: Systems must provide the ability to exchange data in real-
time or near real-time, ensuring immediate access to patient information for timely clinical
decisions [82].

While these requirements enhance EHR functionality, they introduce challenges with existing
interoperability standards:

1. Varying Definitions of Interoperability: Existing standards like HL7 and FHIR provide
specific frameworks for data exchange, which do not always align with the broader definitions
in the Cures Act, leading to potential implementation conflicts [82].

2. Compatibility Issues: Integrating EHRs with various health data registries presents com-
patibility issues, especially with legacy systems not designed to support current data exchange
protocols [82].

3. Adapting to New Protocols: Adopting new data-sharing protocols beyond current stan-
dards requires significant modifications to existing EHR systems, which disrupt workflows and
necessitate additional staff training [82].

Meeting these capabilities necessitates EHR vendors invest in system development or upgrades
to comply with the new requirements. This includes enhancing system architecture for advanced
security features and broader integration with healthcare networks [82]. The goal is to create a
dynamic, responsive, and patient-centric healthcare information ecosystem that leverages data to
improve care delivery and patient outcomes [82].

By setting these standards, the 21st Century Cures Act elevates expectations for EHR func-
tionality, significantly pushing the envelope on what is required from modern healthcare technol-
ogy [82]. Achieving these goals requires a concerted effort from all stakeholders, including EHR
vendors, healthcare providers, and regulatory bodies, to navigate potential discrepancies and en-
sure a smooth transition to these enhanced standards [82].

20

Patient Access and Empowerment Requirement

The Cures Act strongly emphasizes enhancing patient access to their electronic health information
(EHI) through health information exchanges, as outlined in Section 4006 [83]. This section aligns
with broader goals to empower patients in their healthcare management by mandating legislative
changes that expand patient rights to access, manage, and understand their health data [83]. These
changes introduce new terms and definitions for patient data rights and access mechanisms [83].

To meet these requirements, HealthIT systems must implement several key technical function-
alities:

1. Patient Portals and Mobile Apps: Systems should facilitate direct patient interactions
with their EHR through user-friendly patient portals and mobile applications. These plat-
forms must be designed to allow patients to easily access, download, and transmit their data
securely [83].

2. Compliance with Accessibility Standards: The portals and apps must comply with
accessibility standards to ensure that all patients, including those with disabilities, can use
the services without barriers [83].

3. Real-Time Access: Technologies should support real-time or near real-time access to health
data, ensuring that patients can view their most up-to-date health information as soon as it
is available within the healthcare system [83].

Beyond technical access, the Cures Act mandates that data must be presented in a manner
that is understandable and usable for patients, who may not have specialized medical or technical
knowledge [83]:

1. Data Presentation: Information must be displayed in a clear, concise, and patient-friendly
format. This may involve transforming complex medical terms into simpler language and
providing educational resources to help patients understand their health information [83].

2. Interactive Features: Implementing interactive features such as FAQs, help desks, and tuto-
rial videos within the portals to assist patients in navigating their health data effectively [83].

3. Integration with Health Management Tools: Incorporating tools that allow patients
to set reminders for medications, track their health metrics, and even schedule appointments
directly through the platform can enhance the usability of the information [83].

The expansion of patient access and empowerment through technical means presents several
challenges [83]:

1. Security and Privacy: Ensuring that increased accessibility does not compromise the secu-
rity and privacy of patient data is paramount. Implementing robust authentication processes,

21

such as two-factor authentication, and ensuring that all data transmissions are encrypted are
essential [83].

2. System Compatibility: Integrating these new functionalities into existing HealthIT infras-
tructures may require significant system upgrades or redesigns to ensure compatibility and
functionality [83].

3. Regulatory Compliance: Developers must navigate a complex regulatory landscape to
ensure that all new features comply with not only the Cures Act but also other applicable
laws such as HIPAA [83].

By mandating enhanced patient access and empowerment, the Cures Act fundamentally shifts
how patients interact with their health data, driving a need for HealthIT systems to adopt more
patient-centered approaches in their design and functionality [83]. This shift not only aims to
improve patient outcomes by making healthcare more transparent but also poses significant technical
and compliance challenges that must be addressed to realize these benefits fully [83].

Additional Provisions for HealthIT Integration

Further supporting these efforts, the Cures Act outlines several additional provisions to advance the
integration and interoperability of HealthIT systems. Section 4001, Assisting Doctors and Hospitals
in Improving Quality of Care for Patients, discusses the advancement of interoperable HealthIT
services [78]. It lays the groundwork for the development of a trusted health information network
by defining conditions for trusted exchange and promoting policies that encourage the adoption of
compliant electronic health information systems [78].

Section 4002, Transparent Reporting on Usability, Security, and Functionality, mandates trans-
parency in the deployment of HealthIT [79]. This section requires that technologies used for the
storage, exchange, or use of electronic health information adhere to standards that promote secure
access and use [79]. These technologies must also be tested in real-world settings to ensure they
meet practical interoperability and functionality requirements [79].

Section 3001, Patient Experience Data, enhances the role of the Office of the National Coordina-
tor for Health Information Technology (ONC), focusing on standards and certification criteria. This
section allows the ONC to coordinate federal HealthIT policies and programs and support research
crucial for achieving interoperability. Moreover, Section 3060(A), Clarifying Medical Software Reg-
ulation, complements the information blocking provisions by instructing the Department of Health
and Human Services (HHS) to report to Congress any instances of non-compliance, providing a
legal framework for action against entities that hinder information sharing.

Each of these sections collectively aims to create a more integrated, efficient, and patient-centered
healthcare system. By addressing interoperability, information blocking, patient data access, and
the standardization of HealthIT, the 21st Century Cures Act lays out a vision for a future where

22

HealthIT supports better health outcomes through improved data exchange, system integration,
and patient empowerment.

2.3.2 Ambiguities and Security Implications

Despite its transformative intent, the 21st Century Cures Act contains ambiguities that could po-
tentially lead to implementation challenges, especially concerning the security of health information
systems. The use of broad directives and the introduction of new terminologies without clear
definitions could result in varied interpretations and inconsistent implementations, which might un-
dermine the security and efficacy of HealthIT systems. This highlights the need for more explicit
regulatory guidance and standard definitions to ensure that the objectives of the Act lead to secure
and effective implementations across the HealthIT landscape [1].

Definition of Interoperability

The Cures Act redefines interoperability in a manner that emphasizes secure, effortless exchange
and use of health information across different systems [80]. However, the Act states:

"enables the secure exchange of electronic health information with, and use of electronic
health information from, other HealthIT without special effort on the part of the user;"

While aiming to be comprehensive, this definition lacks specific requirements for security protocols
or standards, leaving it up to individual implementers to determine what "secure" means in practice.
This could lead to inconsistencies in the security measures applied across systems, increasing the
risk of data breaches and unauthorized access.

Trusted Exchange Framework

The Cures Act instructs the ONC to develop a trusted exchange framework [80], including:

"[convening] public-private and public-public partnerships to build consensus and de-
velop or support a trusted exchange framework, including a common agreement among
health information networks nationally."

While this directive aims to foster collaboration and standardization, the lack of detailed guidelines
on the security aspects within these frameworks could result in variable adherence to best security
practices. The ambiguity surrounding what constitutes a "trusted" exchange and how these should
be securely implemented poses significant challenges.

Provider Digital Contact Information Index

The Cures Act mandates the creation of a digital index for health professionals’ contact informa-
tion but does not specify the security measures required to protect this sensitive information [80].

23

Without explicit security requirements, this index could be vulnerable to cyber-attacks, leading to
potential exposure of personal data.

Deference to Standards Development Organizations

The Cures Act states [80]:

"In adopting and implementing standards under this section, the Secretary shall give
deference to standards published by standards development organizations ..."

This reliance on external standards without a clear mandate for evaluating or enhancing their
security postures can lead to the adoption of standards that may not be robust against evolving
cyber threats.

Transparency and Testing of Information Technology

Section 4002 emphasizes the need for transparency in HealthIT and mandates that technologies
used for the exchange, storage, or use of electronic health information have published APIs that
adhere to standards promoting secure access and use. However, it states:

"the developer or entity ... has successfully tested the real world use of the technology
for interoperability in the type of setting which such technology would be marketed."

This section requires these technologies to be tested in real-world settings, but it does not detail
the security testing protocols, potentially leading to gaps in the security validation process.

ONC’s Enhanced Role and Removing Barriers to Interoperability

Sections 3001, Patient Experience Data, and 3060(A), Clarifying Medical Software Regulation,
enhance the ONC’s role and focus on removing barriers to interoperability. Patient Experience
Data enhances ONC’s authority to coordinate federal HealthIT policies but does not clearly define
the scope of security oversight within these policies. Similarly, Section 4004, Information Blocking,
mandates the discouragement of information blocking and requires reporting to Congress instances
of non-compliance. However, it reads:

"Any individual or entity ... that the [Department of Health and Human Services],
following an investigation, determines to have committed information blocking shall be
subject to a civil monetary penalty ... which may not exceed $1,00,000 per violation."

This provision lacks specifics on the procedures for investigation and the standards against which
practices are judged, potentially leading to inconsistent enforcement and ambiguity in what consti-
tutes information blocking.

24

These ambiguities highlight a critical need for more explicit regulatory guidance and standard
definitions to ensure that the objectives of the 21st Century Cures Act lead to secure and effective
implementations across the HealthIT landscape.

2.4 Introduction to the Role of the ONC and the Selection of Stan-
dards

2.4.1 Overview of ONC’s Authority Enhancement

With the enactment of the 21st Century Cures Act, the ONC was endowed with enhanced responsi-
bilities, crucial for steering the modernization of HealthIT across the United States. As delineated
in the Act, the ONC is charged with “the development, implementation, and oversight of standards
that enable secure, seamless interoperability of health systems" [1]. This expanded role empow-
ers the ONC to ensure compliance across the HealthIT spectrum, emphasizing its central role in
coordinating federal HealthIT policies and initiatives.

2.4.2 Legislative Requirements for Standard Selection

The 21st Century Cures Act provides a clear mandate for the selection of HealthIT standards,
emphasizing the necessity for systems to be secure, usable, and interoperable. Specifically, the Act
states:

"The strategy developed under paragraph (1) shall address the regulatory and adminis-
trative burdens (such as documentation requirements) relating to the use of electronic
health records. Such strategy shall include broad public comment and shall prioritize ...
activities that provide individuals access to their electronic health information; activities
related to protecting the privacy of electronic health information; activities related to
protecting the security of electronic health information; and other areas, as the Secretary
determines appropriate." [1].

These criteria reflect the legislative intent to foster HealthIT systems that are not only technolog-
ically advanced but also accessible and efficient for all users. ONC evaluated existing HealthIT
standards and considered HL7 FHIR Standards.

2.4.3 HL7 FHIR

Overview of HL7

Health Level 7 (HL7), established in 1987, is a not-for-profit, ANSI-accredited standards develop-
ing organization dedicated to providing a comprehensive framework and related standards for the
exchange, integration, sharing, and retrieval of electronic health information. HL7 standards are

25

widely used globally and play a critical role in enhancing interoperability among disparate health
information systems, thereby supporting clinical practice and the management, delivery, and eval-
uation of health services [26].

HL7 has been pivotal in addressing complex data challenges in healthcare, contributing signifi-
cantly to improvements in clinical decision-making and operational efficiency. The development of
Fast Healthcare Interoperability Resources (FHIR), initiated in 2011, marked a significant milestone
for HL7. FHIR was introduced as an evolution of HL7’s earlier standards, designed to better meet
the modern demands of scalability, interoperability, and flexibility in various healthcare environ-
ments. Significant Milestones in the Development of FHIR include:

• 2011: The inception of FHIR, aiming to simplify implementation without sacrificing infor-
mation richness or interoperability.

• 2014: Release of FHIR Draft Standard for Trial Use (DTSU) 1, which provided the first
testing ground for the new framework.

• 2015: FHIR DSTU 2 was released, introducing significant enhancements based on community
feedback and real-world testing.

• 2017: With FHIR Release 3, the standard began to see broader adoption, supported by
regulatory frameworks and increasing global interest.

• 2020: Release 4 of FHIR, which included normative content that established FHIR as a
mature standard, suitable for widespread implementation.

These developments illustrate HL7’s ongoing commitment to refining and advancing its stan-
dards to support a global ecosystem of healthcare information exchange. The role of FHIR has
become increasingly important with the advent of the 21st Century Cures Act, which emphasizes
the use of standards that enable efficient and secure access to electronic health information across
systems. As such, FHIR’s design principles—emphasizing simplicity, extensibility, and interoper-
ability—are directly aligned with the goals of the Cures Act, facilitating its adoption as a key
standard in the pursuit of improved healthcare outcomes.

HL7’s extensive history and its progressive evolution into the FHIR standard underscore its
foundational role in shaping the landscape of global health IT, well before and continuing after the
introduction of the 21st Century Cures Act. This deep-rooted history supports HL7’s authority
and reliability in the ongoing efforts to enhance health data interoperability across the continuum
of care.

Goals and Purpose of HL7 FHIR

The HL7 FHIR standard specifically addresses the complexities of healthcare data and aims to
simplify implementation across different platforms. According to the official HL7 website, FHIR

26

is designed to enable "healthcare information to be available, discoverable, and understandable
globally, leading to better health outcomes" [26]. FHIR combines the best features of HL7’s previous
standards with the latest web standards to produce a robust, scalable, and efficient methodology
for sharing healthcare information electronically.

Design Principles and Interoperability

FHIR is built on a set of design principles that prioritize universal accessibility and ease of inte-
gration. These principles ensure that FHIR can support diverse healthcare applications worldwide.
FHIR’s design facilitates interoperable usage across enterprise and community boundaries, a criti-
cal feature for modern health systems that increasingly rely on comprehensive data sharing proto-
cols [26]. This approach directly addresses the Cures Act’s emphasis on enhanced interoperability
and accessibility, ensuring that systems can seamlessly connect and communicate across different
healthcare environments, which is essential for achieving the Act’s goals of improved healthcare
outcomes and reduced silos in HealthIT.

Support for Diverse Applications

The flexibility of the FHIR standard allows it to support a wide range of applications, from mo-
bile health apps and cloud communications to data exchange among large healthcare providers.
This versatility is due to FHIR’s modular architecture, where data elements are defined as "re-
sources," which can be managed and communicated independently but also integrated into larger
workflows [26]. By enabling such diverse applications, FHIR supports the Cures Act’s requirements
for a health IT ecosystem that is adaptable and capable of supporting various health IT needs, thus
promoting a more patient-centric and provider-friendly environment.

Security Implementations and Requirements

Security is a paramount concern in the development of FHIR standards. FHIR includes compre-
hensive security frameworks designed to safeguard Protected Health Information (PHI). "FHIR
resources are equipped with detailed security labels that help implement the necessary access con-
trols," according to HL7 guidelines [26]. Additionally, the use of modern web-based technologies
such as OAuth 2.0 for secure authentication and HTTPS for data encryption ensures that all data
transactions meet current best practices in cybersecurity. These features align well with the Cures
Act’s focus on securing health information and ensuring that health IT systems provide robust
protection against unauthorized access.

27

Security Frameworks and PHI Protection

HL7 has developed security frameworks that outline specific requirements for protecting health
information. These frameworks ensure that FHIR implementations can effectively use encryp-
tion, authentication, audit trails, and operational security to prevent unauthorized access and data
breaches [26]. This level of security is crucial for meeting the Cures Act’s stringent requirements
for privacy and security protections, particularly in the context of increasing data accessibility and
interoperability mandated by the law.

Modern Web-Based Technologies

FHIR’s approach to using modern web technologies helps fulfill its security requirements and broad-
ens its applicability. This includes leveraging contemporary protocols and frameworks such as
HTTPS for secure communication, OAuth 2.0 for secure authorization, and JSON for data inter-
change, which facilitate secure data exchange across different HealthIT systems [26]. This adherence
to standard-based technologies is essential for complying with the Cures Act’s call for advanced
health IT systems that are capable of supporting secure and seamless data exchanges across a
multitude of healthcare platforms and users.

Data Quality and System Interoperability

FHIR leverages existing logical and theoretical models to ensure high data quality and system
interoperability. Central to this is its use of a uniform data model, which means that data is
represented in a consistent format across different systems and platforms. This standardization
supports effective data integration and retrieval by ensuring that data fields and structures are
universally understood and applied [26].

In practical terms, the uniform data model ensures that healthcare data such as patient records,
treatment information, and clinical outcomes are organized in a way that is consistent and pre-
dictable. This uniformity is crucial because it allows disparate systems to interpret and process
data without requiring extensive customization or translation layers, thereby facilitating seamless
interoperability [31].

Moreover, FHIR’s structured data format aligns with international standards, making it a glob-
ally relevant framework. This alignment not only supports the integration of data across different
systems but also maintains consistency and accuracy in healthcare information [27]. This con-
sistency is vital for satisfying the Cures Act’s objectives of improving data quality and system
interoperability across the healthcare spectrum, ensuring that data is not only available but also
accurate and usable across various health IT applications.

The HL7 organization emphasizes, "By combining the best of existing standards with advanced
technologies, HL7 FHIR is uniquely positioned to advance interoperability and improve healthcare

28

outcomes," [26]. This integration of a robust, uniform data model, flexible architecture, and global
accessibility makes HL7 FHIR an indispensable standard in the HealthIT landscape. By providing
a consistent and reliable means of data exchange, FHIR helps healthcare providers achieve the goals
of the 21st Century Cures Act, which include enhanced data quality, better patient outcomes, and
more efficient healthcare delivery.

2.4.4 Selection of HL7 FHIR Standards

Guided by these legislative directives, the ONC selected HL7 FHIR as the foundational standard
to achieve the interoperability aims of the Cures Act. HL7 FHIR was chosen for its adaptability,
robustness, and broad acceptance within the HealthIT community, qualities that align with the
goals of enhancing system integration and user experience. The selection process underscored the
standard’s capability for real-time data exchange and its modular approach, facilitating incremental
implementation across diverse healthcare environments.

HL7 FHIR has been strategically chosen as the cornerstone for advancing healthcare interop-
erability due to its robustness, flexibility, and widespread acceptance. FHIR is designed to enable
healthcare information to be available, discoverable, and understandable globally. FHIR is also de-
signed to facilitate interoperable usage across enterprise and community boundaries [26]. Its choice
is particularly driven by its ability to simplify implementation without sacrificing information in-
tegrity.

FHIR leverages existing logical and theoretical models to ensure data quality and interoper-
ability, making it highly suitable for real-world contexts where health information needs to be
exchanged across different systems [50]. This standard is built on a set of modular components
called "resources," which can be combined to solve clinical and administrative problems in a simple
and integrated way. It supports a wide range of applications, including those on mobile devices,
cloud communications, and institutional healthcare providers, facilitating broad data access and
robust system integration [25].

The adaptability of FHIR to support data portability and compliance with complex regula-
tory frameworks like HIPAA further underscores its suitability [26]. It incorporates strict security
protocols to safeguard Protected Health Information (PHI), ensuring that data exchange across plat-
forms is both secure and compliant with privacy laws; therefore, empowering patients and enhancing
transparency in patient care [1].

2.4.5 HL7 FHIR Implementation Challenges

Despite the apparent benefits, the deployment of FHIR-enabled systems faces significant challenges,
primarily stemming from its rapid integration timeline and the technological disparities among
healthcare providers[1]. One of the primary challenges is the varying levels of legacy technology
present in current HealthIT systems, which can hinder the seamless integration of new, FHIR-based

29

APIs. Many healthcare providers operate on outdated systems that are not readily compatible with
the newer, modular architecture that FHIR proposes. This incompatibility can lead to substantial
costs in system upgrades and training, placing a strain on resources [11].

Furthermore, the rapid deployment required by regulatory mandates such as the 21st Century
Cures Act imposes significant pressure on healthcare organizations to quickly adapt to new stan-
dards [9]. This haste can compromise the thoroughness needed in implementing secure and efficient
systems, potentially leading to issues such as data breaches or inadequate data handling capabilities,
which can undermine patient trust and data integrity [8].

Healthcare providers also face challenges related to the scalability of FHIR solutions. As health-
care data continues to grow in volume and complexity, ensuring that FHIR implementations can
handle large datasets efficiently while maintaining performance is crucial [3]. Additionally, the need
for constant updates to comply with evolving standards and security practices adds an ongoing
operational challenge [2].

Strict Security Protocols

FHIR incorporates a range of strict security protocols designed to protect sensitive healthcare data
throughout its lifecycle. These protocols ensure that data is securely handled during storage, trans-
mission, and access, aligning with regulatory frameworks like HIPAA and GDPR [26].

1. Authentication and Authorization: FHIR supports OAuth 2.0, a robust framework for
secure authorization, allowing users to grant third-party applications limited access to their
resources without exposing their credentials. This ensures that only authorized entities can
access sensitive patient data [48]. Additionally, the use of JSON Web Tokens (JWT) for secure
information exchange and fine-grained access controls further strengthens security [36].

2. Data Encryption: To protect data both at rest and in transit, FHIR requires the use of
strong encryption methods. Data is typically encrypted using industry-standard algorithms,
such as AES-256, during storage. For data in transit, FHIR mandates the use of TLS (Trans-
port Layer Security) to secure communications between clients and servers, preventing eaves-
dropping and tampering [30].

3. Audit Logging and Monitoring: FHIR systems must maintain detailed logs of all access
and actions performed on data. This auditing capability helps in tracking and reviewing access
to ensure compliance and detect any unauthorized activities. Regular monitoring of these logs
is crucial for maintaining the integrity and security of health information systems [28].

4. Secure Data Handling Practices: FHIR incorporates guidelines for the secure handling of
PHI, ensuring that systems adhere to best practices for data management. This includes data

30

minimization, ensuring that only necessary data is collected and processed, and implementing
mechanisms for secure data deletion and disposal [29].

5. Compliance with Security Standards: FHIR aligns with several global security standards
and frameworks, including ISO/IEC 27001 for information security management and NIST’s
Cybersecurity Framework, to provide comprehensive security controls and ensure compliance
with legal and regulatory requirements [35, 47].

These protocols ensure that FHIR can handle the complexities of healthcare data security ef-
fectively, making it a trusted standard for health IT interoperability. By integrating these strict
security measures, FHIR helps healthcare providers and organizations meet the rigorous demands of
regulatory compliance while safeguarding patient data against potential breaches and unauthorized
access.

Conflicting Requirements

However, these requirements can inherently conflict with HIPAA regulations, which are designed to
protect patient privacy and ensure the security of health information. HIPAA mandates that ePHI
must be securely guarded, with access strictly controlled [77]. The challenge arises in creating a
system that is both easily interoperable and compliant with HIPAA’s privacy protections. HL7 FHIR
enables data to be easily accessible and sharable across diverse platforms, which, while enhancing
care coordination and patient engagement, also raises potential privacy concerns.

Security Concerns Amidst Open Access

The ability of patients to control the sharing of their health data, a core component of the Cures
Act, is at odds with HIPAA’s emphasis on limiting data disclosure to the minimum necessary for the
purpose of specific healthcare operations [1, 77]. This dichotomy necessitates sophisticated security
measures within FHIR implementations to balance accessibility with compliance. Technologies like
OAuth 2.0 and comprehensive auditing features are employed to address these concerns but also
add complexity to the system’s architecture and operation.

Technological Disparities and Legacy Systems

Additionally, the rapid integration of FHIR standards mandated by federal guidelines confronts
the existing technological disparities among healthcare providers. Many healthcare systems rely on
legacy technologies that are not fully compatible with the modular and open architecture of FHIR,
leading to significant challenges in upgrading systems to meet both FHIR and HIPAA standards
without disrupting existing workflows [11]. This scenario often results in substantial costs and
resource allocation to ensure compliance, training, and system compatibility.

31

Legislative and Regulatory Balancing

As healthcare data volumes increase and systems become more interconnected, ensuring that FHIR
implementations can effectively manage large datasets while maintaining compliance with evolving
standards and security practices presents an ongoing operational challenge [3]. The need for con-
tinuous updates to address security vulnerabilities, comply with both the Cures Act and HIPAA,
and adapt to the changing healthcare landscape requires a careful balancing of innovation with
regulatory compliance.

Potential for Data Breaches

The shift towards more open and accessible health information systems, as encouraged by the
21st Century Cures Act, must be navigated carefully to avoid potential data breaches that could
undermine patient trust and data integrity [8]. Implementing robust encryption methods, secure
data transmission protocols, and rigorous access controls are essential to mitigating the risks posed
by increased data accessibility.

Addressing these challenges requires a nuanced understanding of both the technological aspects
of FHIR and the legal implications of HIPAA, ensuring that the drive for greater interoperability
does not compromise the privacy and security of patient data. By integrating advanced security
frameworks and continuous monitoring of compliance requirements, healthcare providers can navi-
gate these conflicting demands to achieve a balanced approach that upholds both legislative intents
and protects patient privacy [2].

The implementation of HL7 FHIR, while offering significant benefits in terms of interoperability
and access, presents unique challenges when reconciled with the stringent privacy and security re-
quirements of the Health Insurance Portability and Accountability Act (HIPAA). The 21st Century
Cures Act advocates for health information systems that are open, accessible, and interoperable,
promoting patient empowerment through easier access to medical records and facilitating broader
data sharing across healthcare systems [1].

With the legislative framework set to reshape the landscape of HealthIT, it is imperative to assess
the security implications these changes bring. The following section explores potential vulnerabilities
introduced by these legislative mandates and the necessary measures to mitigate them.

2.5 Security Concerns in Rapid API Integration

2.5.1 Overview of API Security in Healthcare

As healthcare systems increasingly rely on digital technologies, APIs have become pivotal for en-
suring interoperability between various software platforms and devices. APIs facilitate seamless
data exchange and integration across different healthcare systems, thereby improving the efficiency

32

of services and patient care management [26]. However, the expanded use of APIs also introduces
significant security risks that must be addressed to protect sensitive health information [55].

The importance of securing APIs cannot be overstated, as they often handle sensitive data,
including PHI which is protected under laws like the HIPAA in the United States. Secure APIs are
crucial not only for compliance with regulatory requirements but also for maintaining patient trust
and safeguarding against data breaches that can lead to financial and reputational damage [2].

2.5.2 Common Vulnerabilities

Healthcare APIs are susceptible to a range of security vulnerabilities which, if exploited, can lead
to unauthorized access, data leakage, and service disruptions. Common vulnerabilities include:

1. Injection Flaws: These occur when untrusted data is sent to an interpreter as part of a
command or query [55]. Injection flaws allow attackers to execute unintended commands or
access unauthorized data [59].

2. Broken Authentication: Inadequate authentication mechanisms can allow attackers to assume
the identities of legitimate users, gaining unauthorized access to systems [55].

3. Insecure Data Storage and Transmission: Without proper encryption, data stored or trans-
mitted via APIs can be intercepted, exposing sensitive patient information [62].

4. Insufficient Logging and Monitoring: Poor logging practices can prevent the detection of
security breaches, increasing the time attackers remain within the network undetected [64].

The Open Web Application Security Project (OWASP) regularly publishes a list of top API
security risks, providing a resource for developers to understand and mitigate common threats [55].
Given the significant security risks identified in the use of APIs in healthcare, it is imperative to
explore practical implementations that demonstrate how these vulnerabilities can be managed. A
case study approach allows us to apply theoretical knowledge to real-world scenarios, examining the
effectiveness of security measures in operational settings. The following section introduces the case
study, highlighting the selection criteria that prioritize open source solutions with robust security
features and comprehensive documentation.

2.6 Case Study: Selection and Implementation of a FHIR Server

2.6.1 Requirements and Selection Criteria

The selection of an appropriate FHIR server for our case study was driven by several key criteria,
including cost-effectiveness, compliance with security standards, and the accessibility of robust
documentation to assist with development. Given the constraints posed by the 21st Century Cures

33

Act, which does not allocate additional funding for organizations to comply with new standards,
it becomes crucial to consider free and open-source solutions that also offer comprehensive security
features and strong community support.

One critical feature we focused on is SMART on FHIR. SMART stands for "Substitutable
Medical Applications, Reusable Technologies." It is a framework that builds on the FHIR standard
to enable secure, scalable, and interoperable applications in healthcare. SMART on FHIR provides
specifications for how healthcare applications can authenticate and communicate with FHIR servers,
supporting a consistent and secure approach to accessing health data [74, 33].

SMART on FHIR uses OAuth 2.0 for secure authorization, ensuring that applications can access
health data while maintaining strict control over permissions and data sharing. This is particularly
important for protecting patient data and ensuring that only authorized applications and users can
interact with the sensitive information stored in FHIR servers [30, 48].

Given these requirements, it is essential to consider free, open-source software (FOSS) solu-
tions that implement SMART on FHIR capabilities. These solutions should come with extensive
documentation and community resources to facilitate easy deployment and integration. HL7’s Con-
fluence pages provide invaluable resources, discussing various open-source implementations that
feature SMART on FHIR authentication with role-based access controls [32].

Organizations must implement these standards efficiently while managing costs, often ruling out
expensive custom solutions. Thus, the availability of well-documented FOSS with robust security
features, including SMART on FHIR, becomes a primary focus for our selection criteria.

2.6.2 Evaluating Available Solutions

Among the options available, two prominent FHIR server solutions stand out: the Microsoft Azure
FHIR Server [44] and the IBM FHIR Server [25]. Each offers distinct advantages and considerations
for healthcare organizations.

Microsoft Azure FHIR Server

The Microsoft Azure FHIR Server is a fully managed service designed to enable secure and com-
pliant health data exchange in the cloud. It is built on the Azure platform, providing seamless
integration with other Azure services, which can enhance functionality and scalability for health-
care applications. Key features include:

• Managed Service: Being a managed service, it simplifies deployment and maintenance,
reducing the administrative burden on healthcare IT teams [44].

• Security and Compliance: The server is compliant with healthcare regulations like HIPAA
and GDPR, and it includes built-in security features such as data encryption, role-based access
control (RBAC), and auditing capabilities [45].

34

• Integration with Azure Services: It integrates well with other Azure services, like Azure
Active Directory (AD) for authentication and authorization, Azure API Management, and
Azure Logic Apps for building complex workflows [43].

However, one significant consideration is cost. The Azure FHIR Server requires an Azure AD
server for identity management, which adds to the overall expense. This can make it less feasible
for organizations with limited budgets or those looking for cost-effective solutions. The pricing
model typically involves charges for storage, API transactions, and additional services, which can
accumulate depending on usage levels [42].

For more details, the Microsoft Azure FHIR Server GitHub repository provides resources and
examples for deployment and integration: https://github.com/microsoft/fhir-server.

IBM FHIR Server

The IBM FHIR Server, on the other hand, is an open-source solution that offers a robust and flexible
platform for healthcare data exchange. It is designed to support the integration of the HL7 FHIR
standard, promoting the use and sharing of electronic health information. Key features include:

• Open Source and Free: As an open-source project, the IBM FHIR Server is available
without licensing fees, making it an attractive option for organizations seeking cost-effective
solutions [34].

• Compatibility and Flexibility: The server is compatible with a variety of environments
and supports both on-premises and cloud deployments. It adheres to open standards, ensuring
interoperability without the need for proprietary setups [25].

• Extensive Documentation and Community Support: The server comes with compre-
hensive documentation and is supported by a vibrant open-source community, which facilitates
ease of implementation and scalability [25].

• Security Features: It includes robust security features such as support for OAuth 2.0, data
encryption, and detailed audit logging, ensuring compliance with healthcare regulations like
HIPAA and GDPR [25].

The IBM FHIR Server can be deployed with minimal cost compared to managed services, as it
doesn’t require additional licensing or extensive infrastructure. It supports a range of deployment
options, from standalone server setups to containerized environments using Docker and Kuber-
netes [25].

2.6.3 Decision and Implementation of the IBM FHIR Server

The decision to select the IBM FHIR Server for our case study was based on its alignment with
the outlined selection criteria. It offers a robust, scalable, and secure platform for healthcare data

35

exchange, supported by a strong open-source community and comprehensive documentation. This
choice reflects a balance between cost-effectiveness and the ability to meet stringent security and
interoperability standards required by the healthcare industry.

IBM’s FHIR Server is a notable example of a healthcare API designed to support the integration
of the HL7 FHIR standard, which promotes the use and exchange of healthcare information elec-
tronically [26, 25]. Its open-source nature and compatibility with various deployment environments
make it particularly well-suited for organizations looking to implement secure and scalable health
IT solutions without incurring significant costs.

Implementation Methods

The IBM FHIR Server can be implemented in several ways, each with its own set of advantages,
challenges, and resource requirements:

• Building from Source: Building the IBM FHIR Server from source allows for extensive
customization to meet specific operational needs. This method, however, involves a com-
plex setup process that might include integrating additional resources such as a PostgreSQL
database. This complexity can add significant time to the deployment process and may require
deep technical expertise [25].

• Using Pre-built Binaries: Utilizing pre-built binaries simplifies the initial setup but does
not significantly reduce the complexity when configuring advanced features like SMART au-
thentication. Like building from source, it requires the integration of external services and
databases, which can complicate the installation and initial configuration process.

• Deploying via Containers: Container deployment, using technologies like Docker or Ku-
bernetes, offers a streamlined and reliable solution by encapsulating the IBM FHIR Server
and all necessary dependencies within a containerized environment. This method not only
simplifies the setup but enhances the security and consistency of the deployment across dif-
ferent environments. The use of containers can be further optimized with automation scripts
and health checks, which help reduce the management overhead commonly associated with
ongoing maintenance and scalability [25].

Security and Configuration Challenges

Each deployment method comes with specific security considerations:

1. Configuration and Customization Challenges: Whether building from source or using
binaries, detailed attention to configuration is essential to secure the deployment. Misconfig-
urations can leave the server vulnerable to attacks [60].

36

2. Authentication and Access Control Issues: Implementing robust authentication mecha-
nisms such as OAuth 2.0 is crucial. Inadequate authentication controls can lead to significant
security risks, exposing sensitive data [38].

3. Patch Management: Regular updates and patch management are critical for maintaining
security integrity, especially when known vulnerabilities arise [10, 39].

Through rigorous security testing and vulnerability assessments, several potential security issues
have been identified in IBM’s FHIR Server, particularly concerning role-based access controls and
their correct implementation to ensure conservative privilege assignment. This involves granting
users and systems the minimum necessary access rights required to perform their functions, thereby
reducing the attack surface and potential for abuse or exploitation of excessive permissions [51].

The examination of real-world implementation and identification of specific vulnerabilities in the
IBM FHIR Server underline the necessity for a deeper theoretical and methodological exploration
into HealthIT security. The selection of the most appropriate deployment method should consider
not only the ease of initial setup but also the long-term manageability, security, and compliance
with healthcare regulations.

Each implementation method provides unique benefits but also comes with specific challenges
that need careful consideration to balance between ease of implementation, customization needs,
security requirements, and the complexity of ongoing management.

Choosing Containers for Implementation

Given the benefits of consistency and ease of repeatability, we chose to utilize container technol-
ogy for the deployment of the IBM FHIR Server in this case study. Containers encapsulate the
application and its dependencies in a self-contained environment, ensuring that it runs uniformly
regardless of the underlying infrastructure. This isolation helps in mitigating common issues re-
lated to discrepancies between development, testing, and production environments, which can lead
to unexpected behaviors. Moreover, containers can be easily replicated across multiple instances,
providing a seamlessly scalable solution as the demand within the healthcare organization grows.
The use of containers aligns with modern DevOps practices, emphasizing automation, continuous
integration, and continuous deployment, vital for maintaining high standards of reliability and se-
curity in health IT systems. This method is especially advantageous for organizations with limited
budgets, as it reduces the need for extensive resources and development costs associated with im-
plementing features like SMART authentication. Cloud computing environments, such as AWS and
Google Cloud, offer scalable containerized solutions that further alleviate maintenance and manage-
ment overhead, making this approach attractive even for larger organizations looking to optimize
costs and efficiency in their IT operations [25].

37

2.7 Research Gaps and Theoretical Framing

2.7.1 Related Works

The exploration of HealthIT security, particularly within the context of the HL7 FHIR standard,
has gained increasing attention from both academia and industry. This section delves into the
significant contributions made by prior research, with a critical analysis of how these works relate
to the current study and can be further enhanced.

Analysis of Knight’s Work

One of the most notable discussions in the domain of FHIR API security comes from Alissa V.
Knight’s white paper titled Playing With FHIR: Hacking and Securing FHIR API Implementa-
tions [38]. Sponsored by a private company, this white paper primarily serves as a marketing
asset rather than a traditional research paper. Knight’s work focuses on exposing vulnerabilities in
privately implemented FHIR servers through a series of penetration tests and vulnerability assess-
ments. Her findings underscore the critical security gaps in these implementations, particularly in
areas like broken object-level authorization (BOLA) and insufficient data encryption practices [51].

While the white paper has gained attention for bringing to light the vulnerabilities in specific
FHIR API implementations, it has been critiqued for its approach, which emphasizes sensationalism
over actionable solutions. The document does not follow the principles of responsible disclosure,
as it was not intended to provide a comprehensive, peer-reviewed analysis but rather to showcase
vulnerabilities in a dramatic fashion to attract clients. This study builds on the general types of
security gaps identified by Knight, but it is important to note that our focus is on a different FHIR
server implementation, specifically IBM’s FHIR server. Our research aims to provide practical,
implementable recommendations for enhancing the security of FHIR server implementations, con-
tributing to the improvement of HealthIT security practices in a more transparent and academically
rigorous manner [54].

Moreover, while Knight’s white paper sheds light on security challenges associated with FHIR
APIs, it lacks consideration of the broader legislative and regulatory frameworks that govern
HealthIT, such as the Health Insurance Portability and Accountability Act (HIPAA) [77] and the
General Data Protection Regulation (GDPR) [14]. These regulations play a crucial role in shaping
the security practices of healthcare systems. This study expands on Knight’s work by integrating
these regulatory dimensions into our analysis, ensuring that our proposed security enhancements
align with the legal obligations of healthcare providers, thus offering a more comprehensive approach
to securing FHIR-based systems.

38

Comparative Analysis of Other Related Works

In addition to Knight’s contributions, several other studies have explored the security of APIs in
general. For example, Qazi’s work [72] on insecure APIs in zero-trust networks provides valuable
insights into the challenges of implementing secure API frameworks within constrained environ-
ments. However, Qazi’s focus on zero-trust architecture does not fully account for the specificities
of healthcare interoperability standards like FHIR, which require a balance between openness for
data exchange and stringent security measures. This study builds on Qazi’s insights by applying the
principles of zero-trust within the context of FHIR implementations, thereby enhancing the security
posture of these systems without compromising their interoperability.

Similarly, Diaz-Rojas et al. [12] conducted a systematic mapping study on Web API security
vulnerabilities, identifying common risks such as injection flaws, broken authentication, and insecure
data storage. While their work provides a broad overview of API security challenges, it does not
delve into the unique vulnerabilities associated with healthcare APIs, particularly those that leverage
the FHIR standard. The present research extends Diaz-Rojas’ analysis by focusing specifically on
FHIR APIs and their integration within HealthIT infrastructures, offering targeted solutions that
address the specific security needs of healthcare providers.

Conclusion of Related Works

In contrast to these broader studies, the current research offers a nuanced examination of FHIR
server implementations, with a particular emphasis on the interplay between security and compli-
ance. By integrating best practices from both cybersecurity and healthcare regulations, this study
not only reaffirms the importance of securing FHIR-based systems but also proposes enhancements
that are both technically sound and legally compliant.

In summary, while the works of Knight, Qazi, Diaz-Rojas, and others have significantly con-
tributed to the understanding of API security, this study distinguishes itself by focusing on ac-
tionable improvements. By addressing the limitations of prior research and offering a broader
and integrative approach, this study aims to advance HealthIT security practices, ensuring that
healthcare providers can safely leverage the benefits of FHIR without compromising the integrity
of sensitive patient data.

2.7.2 Identification of Research Gaps

While there has been significant research into the security of HealthIT and APIs in general, specific
analysis focusing on the security practices of HL7 FHIR implementations remains limited. The
rapid development and deployment of FHIR standards, propelled by legislative requirements such
as the 21st Century Cures Act, have outpaced rigorous security validations [1]. Existing studies
often concentrate on general API security or broader HealthIT systems without addressing the

39

unique vulnerabilities and threats faced by FHIR implementations. Moreover, the adaptation of
FHIR standards across different healthcare infrastructures, each with varying levels of IT maturity,
presents a complex landscape for ensuring uniform security practices [40]. This disparity highlights
a crucial gap in both the academic and practical understanding of FHIR-specific security challenges,
especially under the constraints imposed by compliance requirements and lack of adequate funding.

2.7.3 Theoretical Contributions

The theoretical framing of this thesis is rooted in a combination of systems theory and risk man-
agement frameworks which provide a comprehensive approach to studying HealthIT systems [46].
Systems theory allows for a holistic view of the interconnected and interdependent components of
HealthIT ecosystems, emphasizing how changes in one part of the system (e.g., the implementation
of FHIR APIs) can ripple through to affect the whole system[73]. This perspective is crucial for
understanding the systemic impacts of FHIR integration on healthcare data security and interop-
erability.

Risk management frameworks, particularly those that focus on cybersecurity risks such as the
National Institute of Standards and Technology (NIST) Cybersecurity Framework, offer a structured
method to assess and mitigate risks associated with API security [76]. By applying these frameworks,
the study identifies specific security vulnerabilities in FHIR implementations and evaluates the
effectiveness of various mitigation strategies. These theoretical tools are instrumental in framing
the research questions and guiding the empirical investigation into how security practices can be
optimized to protect against the identified risks [4].

2.8 Methodological Contributions

2.8.1 Review of Previous Methodologies

The study of FHIR server implementations, particularly in terms of security, relies on diverse
methodologies previously employed in the broader field of cybersecurity and HealthIT research [46].
A common approach involves using static and dynamic analysis tools to identify vulnerabilities
within software applications [88]. For instance, studies on API security often leverage automated
scanning tools to detect common vulnerabilities, such as SQL injection or cross-site scripting, which
are also relevant to FHIR servers [55]. However, while these tools are effective for surface-level
vulnerabilities, they may not fully capture the complex security challenges specific to healthcare
interoperability and API integration [12].

Penetration testing, another prevalent methodology, provides a more hands-on examination
of system defenses by simulating cyber-attacks [13, 22, 53]. This method has been extensively
documented in the literature for its effectiveness in identifying real-world exploitable vulnerabilities,
which automated tools might overlook. Yet, traditional penetration testing methodologies often lack

40

the specificity to address the unique regulatory and operational frameworks within which healthcare
APIs operate, such as compliance with HIPAA or the 21st Century Cures Act [1, 9].

2.8.2 Justification of Methodological Choices

Given the gaps in existing methodologies and the specific challenges associated with securing FHIR
implementations, this research adopts a tailored approach to penetration testing [38]. This choice is
grounded in the need for a detailed, practical understanding of how security vulnerabilities manifest
in FHIR servers under different configurations and use cases [72]. Penetration testing allows for this
nuanced exploration, providing a direct assessment of security flaws in a controlled, ethical manner
that mimics potential attacks by malicious entities.

The rationale for choosing penetration testing is further supported by its alignment with industry
best practices, as recommended by standards bodies such as OWASP and NIST [55, 39]. These
organizations advocate for penetration testing as part of a comprehensive cybersecurity strategy,
particularly in environments where sensitive data is handled, such as in healthcare settings [21].

Moreover, the penetration testing approach in this study is designed to be holistic, incorporating
both automated and manual testing techniques [55]. Automated tools are used to quickly identify
known types of vulnerabilities across the FHIR server’s surface [12]. Manual testing complements
this by exploring sophisticated attack vectors that automated tools might miss, especially those
related to the unique implementation features of the FHIR standard and its integrations [25].

The methodological approach laid out above provides a robust framework for our empirical inves-
tigation, which will be discussed in greater detail in the next chapter, "Methodology." This chapter
will delve into the research design and selection of specific research methods that align with the
outlined theoretical and methodological framework.

2.9 Supporting Evidence and Benchmarks

2.9.1 Evidence from Prior Studies

The establishment of a robust framework for assessing the security and interoperability of FHIR
server implementations draws significantly on findings from previous research within the realms of
HealthIT and cybersecurity [46]. The literature reveals a substantial focus on the vulnerabilities
inherent to EHRs and the APIs that manage their data [2, 38]. Studies like those by Chickowski[8]
have illustrated the prevalence of API breaches and the specific risks these vulnerabilities pose to
healthcare systems.

Further, empirical evidence gathered from real-world breaches, as detailed by Brewster[6], high-
lights the critical need for stringent security measures. These cases often reveal that even patchable
vulnerabilities can lead to significant data breaches, underlining the necessity for ongoing vulnera-
bility assessments and updates; indeed, a principle central to the development and maintenance of

41

FHIR servers.

2.9.2 Benchmarks for Comparison

To gauge the effectiveness and robustness of FHIR server security measures, this research employs
benchmarks derived from both industry standards and prior academic studies. For instance, the
OWASP Top 10 API Security Risks provides a baseline against which the security features of the
FHIR server can be evaluated [55]. This benchmark is critical for understanding where the current
implementation stands relative to recognized security risks and for guiding the prioritization of
mitigation efforts.

Additionally, the benchmarks set by compliance standards such as HIPAA and the guidelines
outlined in the 21st Century Cures Act serve as crucial metrics for assessing the interoperability
and security compliance of FHIR servers [1, 9]. The inclusion of these benchmarks in the analysis
allows for a structured comparison with other HealthIT systems, highlighting areas where the FHIR
server excels or falls short in ensuring data security and regulatory compliance [14, 77, 25].

By employing these benchmarks, the research can quantitatively and qualitatively evaluate how
the security implementations of FHIR servers compare to other systems and the standards expected
by regulators and the industry. This comparison is essential not only for assessing the current state
of FHIR server security but also for identifying specific areas for improvement in pursuit of best
practices in healthcare data exchange.

42

CHAPTER 3
METHODOLOGY

3.1 Introduction

As the integration of healthcare and information technology deepens, advanced frameworks are in-
creasingly vital for enhancing interoperability and security in HealthIT. Central to these efforts is
the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) Application Program-
ming Interface (API) standard, which stands as a crucial element in modern healthcare systems.
The HL7 FHIR API supports the seamless integration and sharing of electronic health information
across various healthcare environments, underpinning clinical and administrative processes [26, 32].
Moreover, its capabilities extend beyond simple data sharing; they are integral to ensuring data
privacy, enhancing patient care, and optimizing operational efficiencies—elements that are indis-
pensable in the evolving landscape of healthcare [31, 27].

The formulation of our study’s hypothesis, "The security framework and implementation proto-
cols of HL7 FHIR API ensure robust protection and privacy of health data across various healthcare
environments," is predicated on the assumption that the architectural and procedural elements of
HL7 FHIR are fundamentally designed to safeguard patient information. This hypothesis is cen-
tral to our investigation and frames the inquiry into how HL7 FHIR’s security measures perform
under real-world conditions, providing a critical evaluation of its effectiveness in protecting health
data [30].

The rationale for focusing on the HL7 FHIR API arises from two main considerations:

1. Global Utilization: HL7 FHIR is extensively adopted worldwide, making its security mech-
anisms crucial for a vast network of healthcare providers and technologists. Understanding
these security protocols is essential for anyone involved in HealthIT, particularly in improving
and ensuring the technology’s safe application [74, 33].

2. Legislative Endorsement: The HL7 FHIR standard has been identified by the Office of the
National Coordinator for Health Information Technology (ONC) and supported by legislative
frameworks such as the 21st Century Cures Act as the benchmark for achieving interoperability
among healthcare systems [78, 80]. This endorsement not only underscores its importance
but also positions HL7 FHIR at the forefront of efforts to secure health data across disparate
systems.

Through this research, we aim to rigorously test the hypothesis by exploring the real-world
effectiveness of HL7 FHIR’s security framework. This involves examining how well the implemen-
tation protocols hold up against various security challenges and threats in healthcare environments.

43

The outcomes of this study are intended to contribute valuable insights into the security of health
technologies, potentially guiding future improvements to ensure that health systems are both safe
and efficient.

3.2 The HL7 FHIR Security Framework

The HL7 FHIR standard represents a cornerstone in modern HealthIT, facilitating the seamless
exchange and management of electronic health data across varied systems. As a robust framework
designed to enhance interoperability, HL7 FHIR addresses numerous challenges faced by HealthIT
professionals, from maintaining the integrity and accessibility of sensitive medical records to ensuring
their confidentiality in a complex digital environment [26, 32].

One of the pivotal strengths of HL7 FHIR is its comprehensive security framework, which is
designed to protect health information at every point of its lifecycle. Key features include:

• Encryption of data at rest and in transit: To safeguard patient information against
unauthorized access, HL7 FHIR mandates the encryption of data both while it is stored
and during its transmission over networks. This dual-layer encryption ensures that sensitive
information such as patient diagnoses, treatment plans, and personal identifiers are kept secure
from potential cyber threats [30, 29].

• Authentication and authorization mechanisms: HL7 FHIR implements robust authen-
tication and authorization processes, including the use of OAuth2 protocols [48]. This ensures
that only authorized users can access the system and that they only have access to the appro-
priate level of information necessary for their roles. Role-based access control further enhances
this by defining exactly what data can be accessed by whom, thus minimizing the risk of data
breaches and misuse [74, 33].

• Data access and modification protocols: The standard regulates not only who can access
health data but also how they can interact with it. Access through APIs is meticulously
managed to ensure that any data retrieval or modification is logged and traceable, maintaining
a clear audit trail that supports both security protocols and regulatory compliance [28].

Flexibility in security implementation is another aspect where HL7 FHIR excels, offering op-
tions to enhance data transmission security such as Transport Layer Security (TLS) and Mutual
TLS (mTLS). While TLS provides encrypted communication channels between two parties, mTLS
extends this by requiring both the client and the server to authenticate each other, which is partic-
ularly useful in environments that demand heightened security measures [30].

In the operational context of HL7 FHIR, various stakeholders interact with the system, each
with distinct roles and permissions:

44

• Patients: Patients can access their own health data through secure patient portals that
connect to FHIR servers. This access, however, is typically "read-only," ensuring that patients
can view their data without altering it [29].

• Providers: Healthcare providers have broader access, which may include adding, updating, or
deleting information based on their specific roles within the healthcare organization. This role-
based access ensures that providers can perform their duties effectively while still maintaining
strict control over data [74].

These layers of security features within HL7 FHIR are essential for maintaining the integrity and
confidentiality of medical data and form a critical part of the infrastructure necessary to support
safe and effective healthcare delivery in the digital age. The careful balancing of accessibility with
security not only adheres to best practices but also aligns with regulatory requirements, setting
a standard for data handling that protects individuals while enabling the seamless flow of health
information across platforms [31, 78].

3.3 Security Challenges and Vulnerability Assessment

The sophisticated architecture of HL7 FHIR, while robust in its security provisions, is not impervious
to the challenges and vulnerabilities that are inherent to any complex IT system, particularly
those dealing with sensitive health information. This section delves into the potential security
vulnerabilities within the HL7 FHIR API framework, carefully analyzing how the system’s open
interfaces, data access protocols, and integration capabilities might expose it to risks that could
compromise patient privacy and data security [38, 20].

3.3.1 Open Interface Vulnerabilities

HL7 FHIR’s ability to interface openly with a variety of systems is one of its greatest strengths,
facilitating broad interoperability and data exchange. However, this openness also introduces signif-
icant risks. Open interfaces are susceptible to a range of security threats, from unauthorized access
to data interception and manipulation. These interfaces must be meticulously managed and secured
to prevent exploitation by cyber attackers who could leverage these access points to infiltrate the
system. Ensuring the security of these interfaces involves not only rigorous encryption protocols but
also constant monitoring and updating of security measures to address emerging threats [12, 65].

3.3.2 Unauthorized Data Access and Breaches

The risk of unauthorized data access is a critical concern in any health information system. In the
context of HL7 FHIR, despite strong authentication and authorization mechanisms, the potential
for breaches remains. This could occur through various means such as credential theft, session

45

hijacking, or exploitation of security flaws in the implementation of the API [48, 36]. Each instance
of unauthorized access could lead to significant breaches, exposing sensitive patient data and un-
dermining the integrity of the healthcare provider’s data systems. These breaches not only threaten
patient privacy but also erode trust in the healthcare system’s ability to protect its data [10, 39].

It is important to acknowledge the risk of insider attacks, where authorized personnel misuse
their access privileges to compromise sensitive data. While insider attacks pose a significant threat
to data security, this thesis will focus solely on external threats and unauthorized access by malicious
actors outside the healthcare organization. Therefore, insider attacks will not be included or further
discussed in this study.

3.3.3 Challenges in Maintaining Data Integrity

Maintaining the integrity of data across disparate systems is another challenge exacerbated by
the complexities of interoperability. HL7 FHIR’s framework, designed to connect various health
information systems, must ensure that data remains accurate and consistent as it travels across
different platforms and interfaces [23, 16]. Any failure in maintaining data integrity can lead to
incorrect patient information being recorded or used, potentially resulting in erroneous treatments
and healthcare decisions. This aspect of data management requires stringent validation and error-
checking mechanisms to ensure that data is not only securely shared but also correctly preserved
without alteration [29].

3.3.4 Implications for Patient Privacy and Data Security

The implications of these vulnerabilities are far-reaching. Patient privacy is directly impacted by any
lapse in data security, with potential legal and ethical ramifications. The confidentiality of patient
records is a cornerstone of medical ethics, and any breach that exposes private health information
can lead to significant distress for the individuals affected and legal consequences for the institutions
responsible[77, 14].

3.3.5 Consequences of Security Breaches

The consequences of potential security breaches extend beyond immediate privacy concerns. Trust
in a healthcare provider’s ability to secure patient data is crucial to the relationship between health-
care professionals and patients. A breach can severely damage this trust, leading to a reluctance
among patients to share necessary information for their care, ultimately impacting patient out-
comes. Moreover, non-compliance with regulations such as the Health Insurance Portability and
Accountability Act (HIPAA) can result in substantial fines and further loss of public trust [19].
Ensuring compliance and protecting patient information requires a proactive approach to security,
one that continuously adapts to the evolving landscape of cybersecurity threats [35, 47].

46

While HL7 FHIR provides a robust framework for the exchange and management of health
information, it also presents specific security challenges that must be addressed to safeguard pa-
tient data effectively. The next section will outline the methodology for empirically investigating
these vulnerabilities, proposing a mixed-methods approach that combines penetration testing with
qualitative assessments to thoroughly evaluate the security of HL7 FHIR implementations.

3.4 Methodology for Empirical Investigation

In pursuit of a comprehensive evaluation of the HL7 FHIR API’s security mechanisms, this study
employs a mixed-methods approach. This methodology combines the quantitative rigor of pene-
tration testing with the nuanced insights of qualitative assessments through system log analyses,
providing a holistic view of the security landscape [46, 73]. This dual approach enables not only the
identification of potential vulnerabilities but also a deeper understanding of the contextual factors
influencing the implementation of HL7 FHIR security features.

3.4.1 Penetration Testing

Penetration testing, a cornerstone of our empirical investigation, involves simulating cyber-attacks
to evaluate the robustness of security measures within HL7 FHIR implementations. This method
helps in identifying vulnerabilities that could potentially be exploited by malicious entities [13, 21].
The penetration tests are designed to mimic a variety of attack vectors, including but not limited
to SQL injection, cross-site scripting (XSS), and session hijacking, which are prevalent threats in
web-based interfaces like those used by HL7 FHIR [8, 2].

Tools and Techniques: A range of tools will be utilized for these tests, including but not
limited to Burp Suite for automated and manual testing [69], and OWASP ZAP for dynamic ap-
plication security testing [59, 58]. These tools are chosen for their robust capabilities in identifying
vulnerabilities across web applications and APIs.

Security Aspects to Be Tested: The testing will specifically focus on areas identified as
potentially vulnerable in the previous sections of this thesis. This includes testing the encryp-
tion mechanisms during data transmission, the effectiveness of authentication and authorization
protocols, and the security of data access and modification protocols [30, 48].

3.4.2 Qualitative Assessments

Complementing the penetration testing, qualitative assessments through system log analyses will
offer insights into the practical challenges and contextual factors surrounding the implementation
of security measures. These assessments aim to uncover how theoretical security protocols translate
into practice and how they are perceived and managed by those who operate and maintain HL7
FHIR systems daily [6, 20].

47

System Log Analyses: Analyses of system logs will help identify patterns that could indicate
potential security issues, such as repeated failed login attempts or unusual access patterns, which
could suggest attempts to breach the system [39, 10].

3.4.3 Integration of Findings

The final step in our methodology involves integrating the findings from both the quantitative
penetration tests and the qualitative assessments. This integration will allow for a comprehensive
understanding of both the empirical performance of security measures and the contextual challenges
that may affect their implementation. Data from penetration tests will provide a clear picture of
where the system’s vulnerabilities lie, while insights from log analyses will help explain why these
vulnerabilities may exist and propose practical solutions [4, 88].

This integrated approach will culminate in a validation of the initial hypothesis, assessing
whether the HL7 FHIR API’s security framework and implementation protocols indeed ensure
robust protection and privacy of health data across various healthcare environments [28]. The find-
ings will provide valuable insights that could influence future developments in HealthIT security,
potentially leading to enhanced security practices that better protect patient information against
the evolving landscape of cyber threats [35, 47].

3.5 Expected Outcomes and Implications

This section outlines the expected outcomes of the empirical investigation into the security of the
HL7 FHIR API, detailing anticipated insights from both penetration tests and qualitative assess-
ments. Each vulnerability identified through these methods offers a unique perspective on the
operational security of the HL7 FHIR system. Moreover, the implications of these findings are
discussed concerning their impact on healthcare providers, patients, and policymakers.

3.5.1 Expected Outcomes of Penetration Tests

Penetration tests are designed to target specific vulnerabilities within the HL7 FHIR framework,
particularly those outlined in the OWASP API Top 10 risks. Here, we anticipate various outcomes,
each shedding light on a different aspect of system security:

• Injection Flaws: Testing for injection flaws (e.g., SQL, command injection) will reveal
whether HL7 FHIR’s API endpoints are susceptible to malicious inputs that could alter
database queries or commands. If tests show no vulnerabilities, it indicates robust input
validation and sanitization. However, should a test fail, it might expose significant risks, po-
tentially allowing attackers to gain unauthorized access to sensitive data or disrupt system
operations [65, 8].

48

• Broken Authentication: By simulating attacks that exploit weak authentication mech-
anisms (such as credential stuffing and session hijacking), we can evaluate the strength of
HL7 FHIR’s authentication processes. Success in these tests would affirm the effectiveness
of OAuth2 protocols and other authentication strategies employed by HL7 FHIR. A failure
here would underscore a critical vulnerability, suggesting that unauthorized users could access
protected health information or perform unauthorized actions, jeopardizing patient privacy
and data integrity [48, 36, 13].

• Sensitive Data Exposure: Tests will assess the encryption protocols for data at rest and
in transit, verifying the system’s capability to shield sensitive data from unauthorized access
and leaks. Positive results would confirm the efficacy of encryption measures like TLS and
mTLS, whereas failures could indicate potential for exposing patient data to cyber threats, a
situation fraught with legal and ethical implications [30, 74].

• Misconfiguration: Testing for security misconfigurations will check for improperly config-
ured permissions, outdated software components, and exposed sensitive data. Correct con-
figurations would suggest a lower risk of accidental data leaks or breaches, whereas miscon-
figurations could lead to significant security lapses, making the system vulnerable to various
attacks [5, 39].

• Access Control Issues: Evaluating role-based access controls will ensure that users can
only access data permissible by their roles. Proper functioning of these controls confirms
compliance with least privilege principles, reducing the risk of data breaches. Conversely,
failures in this area could allow users to perform unauthorized actions, potentially leading to
data corruption or loss [38, 35].

3.5.2 Anticipated Insights from Qualitative Assessments

Qualitative assessments through system log analysis are expected to provide deeper insights into
the contextual implementation challenges faced by HL7 FHIR:

• System Administrator and Developer Insights: Insights from system administrators
and developers will likely highlight practical challenges and operational nuances not evident
through penetration testing alone. These insights may include issues related to daily man-
agement of security protocols, the effectiveness of security training, and the challenges of
maintaining compliance with health data regulations [46, 6].

• Analysis of System Logs: Log analysis might reveal patterns indicating attempted or
successful breaches, providing real-time evidence of security threats and the system’s response.
This could also highlight areas where security measures are effective or where they might need
reinforcement, particularly in detecting and responding to anomalies [73, 10].

49

3.5.3 Implications of the Findings

The findings from this comprehensive security evaluation hold significant implications:

• For Healthcare Providers: Demonstrating robust security practices is vital for maintaining
trust with patients and compliance with health data regulations. Enhanced security measures
might also reduce operational risks, safeguarding the integrity and availability of critical health
data [84, 19].

• For Patients: Patients stand to benefit from strengthened data protection, leading to greater
confidence in digital health services. Improved security may encourage patients to engage more
fully with digital health platforms, facilitating better health management [77, 14].

• For Policymakers: Results may inform policy decisions, potentially leading to updated
guidelines or standards for securing health information systems. This could include recom-
mendations for regular security assessments, updates to existing protocols, or the development
of new security frameworks to address identified vulnerabilities [47, 78].

This investigation not only tests the robustness of HL7 FHIR’s security implementations but
also enhances the broader understanding of how to effectively protect health information in a digital
environment. By addressing both the technical vulnerabilities and the operational challenges, the
findings aim to contribute significantly to the advancement of security practices within the healthcare
sector.

3.6 Conclusion

This chapter has provided a detailed account of the methodology employed to evaluate the security
framework and implementation protocols of the HL7 FHIR API. By integrating both quantitative
and qualitative approaches, our investigation has been structured to rigorously test our hypothesis:
"The security framework and implementation protocols of HL7 FHIR API ensure robust protection
and privacy of health data across various healthcare environments."

3.6.1 Summary of Methodological Approach

Our research began with a comprehensive vulnerability assessment grounded in current cybersecurity
standards, such as the OWASP API Top 10 [55]. This was followed by penetration testing, simulat-
ing real-world attack scenarios to uncover potential security flaws [69]. Complementary qualitative
assessments through system log analyses provided additional insights into the practical challenges
and contextual factors affecting the implementation of HL7 FHIR’s security measures [88, 4].

The integration of findings from these methods has given us a holistic view of the security land-
scape surrounding HL7 FHIR, linking theoretical vulnerabilities to practical exploits and contextual

50

challenges. This comprehensive approach not only supports the validation of our hypothesis but also
underscores the complexity and importance of securing health information systems in a dynamic
digital environment.

As we transition to the next chapter, we will focus on the practical implementation of an HL7
FHIR server. This will involve setting up a test environment to evaluate the security measures
discussed in this chapter. By establishing a robust and realistic testing framework, we aim to
empirically assess the effectiveness of HL7 FHIR’s security protocols in a controlled environment,
providing concrete insights and actionable recommendations for improving HealthIT security prac-
tices.

51

CHAPTER 4
IMPLEMENTATION AND CASE STUDY

4.1 Introduction

This chapter examines the practical implementation of FHIR (Fast Healthcare Interoperability
Resources) Servers, focusing on compliance with key health information standards and legal reg-
ulations. Using the IBM FHIR Server as an example, we detail the adherence to the HL7 FHIR
API standards[26], the 21st Century Cures Act[1], and HIPAA (Health Insurance Portability and
Accountability Act)[77] regulations. While the IBM FHIR Server is highlighted, the principles and
practices discussed are applicable to any FHIR Server setup.

4.2 Configuration and Standards

The foundation for any FHIR Server implementation is to comply with HL7 FHIR API stan-
dards [26]. These standards define how health information should be structured and exchanged
between systems, ensuring that different software can work together efficiently. Adhering to these
standards supports our hypothesis by establishing a consistent framework for security and data
interoperability, which is crucial for robust protection and privacy of health data.

4.2.1 Security Protocols and Compliance

To protect sensitive health information, we establish strong security protocols that align with both
HL7 standards for health data[26] and HIPAA regulations[77] that govern patient data privacy
and security. This alignment not only meets regulatory requirements but also ensures that our
security framework is comprehensive, which is critical for validating our hypothesis regarding the
effectiveness of HL7 FHIR API’s security provisions.

4.2.2 TLS Implementation

Transport Layer Security (TLS) is a protocol that secures data as it travels across the internet or
other networks. Implementing TLS is a critical step to comply with HIPAA, which mandates that
patient data must be protected during transmission[77]. This section details how TLS works in con-
junction with other security measures to prevent data breaches, directly supporting our hypothesis
by ensuring that data in transit is encrypted and secure, a key component of the HL7 FHIR API’s
security framework.

52

4.2.3 SMART Authentication and Role-Based Access Control (RBAC) Using
OAuth 2.0

SMART on FHIR is a framework that extends FHIR to include modern, web-based authentication
methods, such as OAuth 2.0 and OpenID Connect[24]. These methods provide more controlled
access to health records, specifying exactly who can access what data, which is a requirement
under the 21st Century Cures Act[1] to prevent unauthorized information blocking. This setup
exemplifies the implementation of strong access controls, crucial for maintaining data confidentiality
and integrity as hypothesized in our study.

OAuth 2.0 Authentication Framework

OAuth 2.0 is an industry-standard protocol for authorization, enabling third-party applications to
obtain limited access to a web service. The process begins when the client application initiates
an authorization request to the authorization server. This request includes parameters such as the
client ID, redirect URI, and the scope of access requested. The authorization server then presents
a login and consent screen to the resource owner (user), asking for permission to grant access to
the client application. If the user consents, the server issues an authorization code. Subsequently,
the client application exchanges the authorization code for an access token by sending a token
request to the authorization server, including the client ID, client secret, and the authorization
code. Finally, the authorization server returns an access token (and optionally a refresh token) to
the client application, which can then be used to access the protected resources.

SMART on FHIR Integration

SMART on FHIR builds on the OAuth 2.0 framework to provide a standardized approach to ac-
cessing FHIR resources. The key components of the SMART on FHIR workflow include the launch
context, scopes, and bearer tokens. SMART applications can be launched within the context of
a specific patient or encounter, with this context passed to the application via a launch token.
SMART defines a set of scopes that specify the level of access requested, such as read or write
access to patient records. After the OAuth 2.0 authorization process, the access token issued can
be used as a bearer token to authenticate API requests.

RBAC in Linux For Health FHIR Server

The Linux For Health FHIR Server integrates the SMART FHIR module for RBAC to provide
fine-grained access control based on user roles. This module allows administrators to define roles
and permissions, ensuring that users only have access to the resources necessary for their role. The
process begins with role definition, where roles such as Patient, Practitioner, and Admin are defined
with specific permissions for accessing FHIR resources. Next, users are assigned to roles based on

53

their job function and responsibilities. Finally, access control policies are enforced at the FHIR
server level, ensuring that API requests are authorized based on the user’s role and the requested
scope.

According to the HL7 FHIR API implementation, the standard roles allowed are generally
defined to facilitate various types of interactions with healthcare data. These roles are designed
to ensure appropriate access control and data security, adhering to the principle of least privilege.
Here are the standard roles typically implemented in FHIR:

Patient: This role represents the individual whose health data is being accessed. Permissions
are typically limited to accessing their own health data, such as viewing their medical records, lab
results, and prescriptions.

Practitioner: Healthcare providers, including doctors, nurses, and other medical professionals.
Permissions include access to patient data necessary for providing care, such as viewing and updating
medical records, prescribing medications, and documenting clinical notes.

PractitionerRole: Defines the specific role and scope of a healthcare practitioner within an
organization. Permissions vary based on the defined role, ranging from full access to patient data
to specific tasks like conducting tests or performing surgeries.

RelatedPerson: Individuals related to the patient, such as family members or caretakers. Per-
missions may have limited access to the patient’s health data, typically view-only access, depending
on the patient’s consent.

Organization: Healthcare organizations, such as hospitals, clinics, and insurance companies. Per-
missions include broad access to patient data necessary for administrative, billing, and operational
purposes, and the ability to manage practitioner roles and patient assignments.

CareTeam: A group of practitioners and related persons who collaborate to provide care to
a patient. Permissions include access to patient data necessary for care coordination, including
viewing and updating shared care plans and patient records.

System: Automated systems or applications that interact with the FHIR server. Permissions
may include system-level access for operations like data exchange, reporting, and population health
management.

54

Admin: Administrative staff within a healthcare organization. Permissions include access to
patient data for administrative tasks, such as scheduling, billing, and records management. This
role can also include user management and system configuration.

Researcher: Individuals conducting clinical research or studies. Permissions include access to
de-identified patient data or datasets necessary for research purposes, ensuring compliance with
privacy regulations.

Proxy: An authorized representative acting on behalf of a patient. Permissions are similar to the
patient role, allowing access to the patient’s health data based on the patient’s consent.

Implementation Steps

The implementation of SMART on FHIR with OAuth 2.0 and RBAC in the Linux For Health
FHIR Server involves several key steps. Initially, Keycloak is configured as the authorization server,
where realms, clients, and roles are created. The Linux For Health FHIR Server is then configured
to use Keycloak for OAuth 2.0 authentication. RBAC policies are defined within the FHIR server
configuration to control access based on roles, ensuring that only authorized users can access specific
resources. This comprehensive approach to authentication and authorization ensures that the FHIR
server complies with security standards and provides secure access to health data and is described
in detail within our Appendix.

4.3 SMART on FHIR and RBAC Authentication Process

SMART on FHIR is a framework designed to enhance FHIR with advanced web-based authentica-
tion techniques, including OAuth 2.0 and OpenID Connect[24]. These authentication methods offer
precise control over health record access, detailing specifically who is permitted to access what data.
This is a critical requirement under the 21st Century Cures Act[1], aimed at preventing unautho-
rized information blocking. This setup serves as a model for implementing robust access controls,
essential for ensuring the confidentiality and integrity of health data, as proposed in our study.

As shown in the figure (Figure 4.1) from the SMART App Launch Framework [17], the authen-
tication process involves several steps.

4.3.1 Detailed Process Flow

Authorization Request

The process begins when the client application initiates an authorization request to the authorization
server, including parameters such as the client ID, redirect URI, scope of access requested, and an
optional state parameter for CSRF protection. HTTPS is enforced to ensure data encryption in

55

Figure 4.1: SMART on FHIR OAuth 2.0 Authentication Flow [17]

56

transit, and the state parameter is included to prevent CSRF attacks. Potential errors include
invalid client ID, redirect URI, scope, or CSRF detected, each resulting in specific error responses.

Authorization Grant

Upon receiving the authorization request, the authorization server presents a login and consent
screen to the resource owner (user), who logs in with their credentials and grants or denies permis-
sion. If granted, the server issues an authorization code. HTTPS secures user credentials, and the
authorization codes are stored and handled securely. Errors such as invalid user credentials, user
denial, or expired authorization codes result in access denied or expired token errors.

Access Token Request

The client application then exchanges the authorization code for an access token by sending a token
request to the authorization server, including the client ID, client secret, and the authorization code
over HTTPS. This ensures the secure transmission of sensitive data, with client authentication using
the client ID and secret. Errors such as invalid authorization code, client secret, or mismatched
redirect URI result in specific error responses.

Access Token Response

The authorization server responds with an access token, and optionally a refresh token, indicating
the token type and expiry time. HTTPS ensures secure transmission, and the tokens are encrypted
and securely stored. Potential errors include token generation failure or expiry, prompting the client
to handle by requesting a new access token using the refresh token.

API Request with Access Token

The client application uses the access token to make API requests to the FHIR server over HTTPS.
The access token is included in the Authorization header, and the API request details are specified.
HTTPS ensures secure communication, and bearer tokens are validated. Errors such as invalid or
expired access tokens, or insufficient scope, result in specific error responses.

Token Validation and Role-Based Access Control (RBAC) Check

The FHIR server validates the access token and checks the user’s role and permissions. HTTPS
is used for secure token validation, and RBAC policies are enforced based on the user’s role and
requested scope. Potential errors include invalid role/permissions or role mismatch, resulting in
access denied or forbidden errors.

57

API Response

The FHIR server responds to the API request with the requested FHIR resource data and metadata,
such as pagination details and response status, over HTTPS. This ensures secure data transmission
and response encryption. Errors such as resource not found or server error result in specific error
responses like 404 Not Found or 500 Internal Server Error.

Error Logging and Auditing

All access attempts (successful and failed), errors encountered, and user actions are logged for
auditing purposes. Secure logging mechanisms and regular audit reviews are implemented to ensure
logs do not contain sensitive information and to monitor for suspicious activities. Alerts are set up
for critical errors.

4.3.2 Identifying Vulnerabilities and Implementing FHIR Protocols

Each step in the process has potential vulnerabilities, which are mitigated by adhering to FHIR
protocols and implementing additional security measures:

• Authorization Request: - Vulnerabilities: MitM attacks, CSRF attacks. - Mitigation:
Enforce HTTPS, use state parameter.

• Authorization Grant: - Vulnerabilities: Phishing, authorization code interception. - Miti-
gation: Implement MFA, ensure short-lived, single-use authorization codes.

• Access Token Request: - Vulnerabilities: Authorization code leakage or reuse, client creden-
tials exposure. - Mitigation: Use HTTPS, verify single-use, short-lived authorization codes.

• Access Token Response: - Vulnerabilities: Token leakage or interception, insufficient scope
validation. - Mitigation: Ensure secure transmission and storage, validate token scopes.

• API Request with Access Token: - Vulnerabilities: Insecure Clients, Token replay attacks,
insufficient scope validation. - Mitigation: Validate token authenticity, source, and expiration,
validate requested scope.

• Token Validation and RBAC Check: - Vulnerabilities: Improper role assignments, in-
sufficient access control policies. - Mitigation: Regularly audit role assignments and policies,
enforce least privilege.

• API Response: - Vulnerabilities: Sensitive data exposure, data integrity attacks. - Mitiga-
tion: Encrypt data in transit, implement integrity checks.

58

• Error Logging and Auditing: - Vulnerabilities: Logging sensitive information, insufficient
monitoring. - Mitigation: Ensure logs do not contain sensitive information while ensuring the
logs remain useful, implement comprehensive monitoring and alerting.

4.3.3 Contradictions with HIPAA Privacy Requirements

Some FHIR implementations may contradict HIPAA privacy requirements:

• Authorization Request: - FHIR’s use of open standards and public endpoints may expose
metadata, contradicting HIPAA’s stricter controls on IIHI.

• Authorization Grant: - FHIR’s reliance on web interfaces and potentially weak authenti-
cation mechanisms may not meet HIPAA’s stringent requirements.

• Access Token Request: - While FHIR mandates HTTPS, it must ensure all data elements
are encrypted and handled securely as per HIPAA.

• Access Token Response: - FHIR’s tokens, if not adequately secured and audited, could
lead to unauthorized access, contrary to HIPAA’s requirements.

• API Request with Access Token: - Bearer tokens, if intercepted or misused, could allow
unauthorized access, conflicting with HIPAA’s minimum necessary rule.

• Token Validation and RBAC Check: - If RBAC policies are not granular enough or fail
to enforce least privilege, they may not comply with HIPAA.

• API Response: - While FHIR uses HTTPS, the response data must meet HIPAA’s encryp-
tion and access control standards.

• Error Logging and Auditing: - FHIR’s logging standards may not provide the detail or
security required by HIPAA.

4.3.4 Mitigating Contradictions

To align FHIR implementations with HIPAA privacy requirements, the following measures are
recommended:

• Enhanced Authentication: Implement multi-factor authentication (MFA).

• Strict Access Controls: Ensure RBAC policies enforce the principle of least privilege.

• Secure Transmission and Storage: Use strong encryption for all data transmissions and
storage.

59

• Detailed Logging and Monitoring: Implement comprehensive logging and monitoring
mechanisms.

• Regular Security Audits: Conduct regular security audits to ensure compliance with
HIPAA.

By addressing these areas, FHIR implementations can better align with HIPAA privacy require-
ments, ensuring the protection of sensitive health information while leveraging the benefits of open
standards for interoperability.

4.4 Security Protocols Implementation

Implementing robust security protocols is essential to protect against vulnerabilities common in
systems that are accessible via the internet, such as public APIs used by FHIR servers[8].

4.4.1 Data Encryption

All data "at rest" (stored data) and "in transit" (data being sent from one place to another) is
encrypted using AES-256, a strong and widely recognized encryption standard. AES-256 ensures
that even if data is intercepted, it cannot be read without the correct key, making it a critical
component of protecting sensitive health information.

Key Management and Security

While AES-256 provides robust encryption, the security of the encrypted data heavily depends on
how the encryption keys are managed. To ensure the highest level of security, our recommended
implementation uses a Key Management System (KMS) to handle these keys. The KMS securely
generates, stores, and manages the encryption keys, ensuring they are only available when absolutely
necessary.

Within the KMS, Hardware Security Modules (HSMs) are used to provide an extra layer of
protection. HSMs are specialized devices connected to the server that handle encryption keys
securely, ensuring that the keys are never exposed in an unencrypted form. This means that even
within the server, the keys are always kept safe, reducing the risk of unauthorized access.

Minimizing Key Exposure

To further protect the encryption keys, they are never stored in plaintext (an easily readable form)
within the server or application environment. Instead, whenever the system needs to encrypt or
decrypt data, it securely retrieves the keys from the KMS. This process is automatic, with no need
for human involvement, which reduces the chances of the keys being exposed.

60

Since the system that manages these keys is a prime target for attackers, strict security measures
must be in place. Access to the KMS must be tightly controlled, with only authorized system com-
ponents and personnel allowed access. For added security, all interactions with the KMS are logged
and monitored, ensuring that any suspicious activity can be detected and addressed immediately.

Compliance with Standards

Our approach to data encryption and key management is designed to comply with important regula-
tions like the HIPAA Security Rule, which sets strict requirements for protecting health information.
We also follow HL7 FHIR API standards, ensuring that our encryption practices align with industry
best practices for securing health data.

By combining AES-256 encryption with a secure key management system, including the use of
HSMs, we ensure that even if data is breached, it remains protected. This comprehensive approach
validates the security mechanisms of the HL7 FHIR API, demonstrating that our methods effectively
safeguard sensitive health information.

4.4.2 Audit Trails and Monitoring

To meet HIPAA’s demands for accountability in handling health information, our systems are set
up to keep detailed logs of all interactions with the data[77]. These audit trails help track who
accessed or changed patient information and are crucial for investigating and understanding the
scope of any security incidents. This comprehensive monitoring supports our hypothesis by provid-
ing the necessary tools to detect and respond to potential security breaches, thereby maintaining
the integrity and confidentiality of health data.

4.5 Rationale for Feature Inclusion and Exclusion

Including security features like TLS, SMART authentication, and extensive auditing is dictated
by legal requirements from HIPAA[77] and the 21st Century Cures Act[1], ensuring that patient
information is both secure and accessible as prescribed by law.

4.5.1 Exclusion of Advanced Anonymization

While we considered using advanced techniques for anonymizing patient data (making it impossible
to identify the patient from the data), we decided against implementing these in the core setup.
These techniques were not essential for the primary functions of our systems but could be added
later as privacy practices and technologies evolve[14].

61

4.6 Challenges and Solutions in FHIR Server Implementation

Setting up a FHIR Server that complies with HL7 standards and meets complex legal requirements
involves several challenges, particularly in ensuring system interoperability and maintaining high
security and performance[23].

4.6.1 Security Compliance

Adhering to the rigorous security standards required by HIPAA and the 21st Century Cures Act is
particularly challenging due to the open nature of FHIR APIs, which are designed to be accessible
and interoperable[1].

Solution

To address this, we implemented a flexible, parametric security model that includes strong encryp-
tion, thorough access controls, and comprehensive audit capabilities[77]. This model can be updated
easily, allowing us to keep pace with changes in legal requirements and threats.

4.6.2 Legal and Regulatory Compliance

Keeping up with the varied and changing regulations in healthcare is a complex task that requires
a system that can adapt quickly[1].

Solution

We established a robust compliance framework that includes adaptable modules and automated
systems for ongoing monitoring of our compliance status, ensuring that we can adjust to new rules
and maintain our systems within legal requirements continuously[77].

4.7 Testing Environment

The testing environment was carefully isolated and controlled to ensure the accuracy of the results.
This was achieved by using a dedicated network segment for the test infrastructure to eliminate ex-
ternal interference and potential security threats[26]. Security measures included the use of secured
network protocols and firewalls to protect data integrity and prevent unauthorized access[60].

4.8 Validation of Setup

Prior to beginning the actual testing, several procedures were followed to ensure the setup was
functioning correctly. These included configuring and testing the network connections between the

62

FHIR Server and key management system, and verifying the responsiveness of the system through
initial health checks[70]. Communication validation was performed using testing tools, ensuring
that all components were interoperable and secure[70, 69].

63

CHAPTER 5
FINDINGS AND ANALYSIS

5.1 Introduction

This chapter provides an in-depth analysis of the security vulnerabilities identified during the eval-
uation of FHIR Server implementations. Each section not only discusses the technical details and
implications of these vulnerabilities but also their alignment with security principles and regu-
latory standards, such as the OWASP API Top 10, HIPAA, the 21st Century Cures Act, and
GDPR [55, 77, 1, 14]. This structured approach enhances understanding of each category’s im-
pact on compliance and operational security, reflecting the rigorous methodology established in the
previous chapter.

5.2 Generalized Security Vulnerabilities

5.2.1 Rate Limiting and DDoS Vulnerability

Description of Vulnerability

Rate limiting is crucial to prevent excessive requests from overwhelming the server, known as Dis-
tributed Denial-of-Service (DDoS) attacks [58]. Without proper rate limiting, servers are vulnerable
to attack vectors that aim to disrupt service by flooding them with traffic [60].

Importance of Addressing This Vulnerability

Establishing rate limiting is essential for maintaining service availability and resilience against tar-
geted flood attacks, which are common in cyber-attacks aimed at disrupting operations.

Regulatory Implications

While HIPAA emphasizes the need for protective measures against anticipated threats to service
availability, it doesn’t explicitly mandate rate limiting [77]. However, implementing rate limiting
aligns with the best practices for safeguarding the availability aspect of security under various
standards, including the HL7 FHIR API [26]. This supports our hypothesis by demonstrating that
adherence to best practices enhances security frameworks.

64

5.2.2 Authentication and Access Control Challenges

Description of Vulnerability

Weak authentication and insufficient access controls allow unauthorized access to sensitive data,
undermining the security of HealthIT.

Importance of Addressing This Vulnerability

Enhanced authentication protocols and robust access control mechanisms are fundamental to secure
health data from unauthorized access and breaches, essential for maintaining confidentiality and
trust [48].

Regulatory Implications

This directly relates to HIPAA’s requirement for ensuring access control and authentication mech-
anisms to protect HealthIT [77]. The GDPR also emphasizes the need for strong authentication to
prevent unauthorized data access [14], supporting our hypothesis by underlining the critical role of
robust access controls in safeguarding health data.

5.3 Client-Side Vulnerabilities

5.3.1 Link Manipulation and Input Validation Issues

DOM-Based Link Manipulation

Link manipulation, particularly DOM-based, involves the improper handling of user input, which
can lead to unauthorized redirection and potential phishing attacks. This vulnerability exploits the
dynamic nature of the Document Object Model (DOM) in web applications [59].

Importance of Addressing This Vulnerability

Mitigating this risk is critical to prevent attackers from redirecting users to malicious sites, which
can lead to further exploitation such as stealing credentials or other sensitive information.

Regulatory Implications

This vulnerability implicates several compliance areas. While not explicitly mentioned in HIPAA or
the 21st Century Cures Act, it violates general principles of data integrity and secure data handling
required under these regulations [77, 1]. Addressing this supports our hypothesis by illustrating
how maintaining data integrity is crucial for compliance and security.

65

Path-Relative Style Sheet Import

Path-relative style sheet imports can be manipulated to inject malicious content, leading to cross-site
scripting (XSS) attacks or other client-side exploits [63].

Importance of Addressing This Vulnerability

Addressing these vulnerabilities is essential to protect against client-side attacks that compromise
user sessions or manipulate client-side applications.

Regulatory Implications

Similar to DOM-based issues, path-relative vulnerabilities reflect poor input validation practices
which are indirectly covered under the security guidelines of both HIPAA and the GDPR, which
advocate for robust information integrity and secure processing practices [77, 14]. This reinforces
our hypothesis about the necessity of comprehensive security measures to meet regulatory standards
and protect health information.

5.3.2 Input Sanitization Failures

Reflected XSS and Input Validation

Reflected cross-site scripting (XSS) occurs when an application includes unvalidated or unescaped
user input as part of HTML output. An attacker can use this vulnerability to execute arbitrary
JavaScript code in the browser of an unsuspecting user [64].

Importance of Addressing This Vulnerability

It’s crucial to sanitize user input to prevent malicious scripts from running, which can lead to
unauthorized actions being performed on behalf of the user, data theft, and session hijacking.

Regulatory Implications

Failing to properly sanitize user input can lead to breaches of sensitive data, a direct violation of the
data protection and privacy mandates in HIPAA, GDPR, and related compliance frameworks [77,
14]. This further validates our hypothesis by showing the importance of stringent input validation
in maintaining security and regulatory compliance.

66

5.4 Cross-Domain Data Handling Issues

5.4.1 Security Misconfigurations in Data Exchange

Cross-domain Referrer Leakage

Cross-domain referrer leakage involves the unintentional disclosure of sensitive information through
HTTP headers when data is transferred between different domains [62].

Importance of Addressing This Vulnerability

Preventing this type of leakage is essential to protect potentially sensitive query parameters and
ensure that user data remains confidential across different services.

Regulatory Implications

This issue directly impacts the confidentiality and integrity of data as outlined in HIPAA and
GDPR, necessitating strict controls over how data is shared across domains [77, 14]. Correctly
managing this vulnerability underscores the need for effective data handling protocols, aligning
with our hypothesis on securing health data through robust implementation practices.

5.4.2 Clickjacking (Frameable Response)

Description of Vulnerability

Clickjacking, or UI redressing, involves tricking a user into clicking on something different from
what the user perceives, potentially revealing confidential information or consenting to different
actions [56].

Importance of Addressing This Vulnerability

Securing applications against clickjacking is crucial to maintain the integrity of user interactions on
the platform.

Regulatory Implications

Protecting against user interface manipulation attacks like clickjacking is important under the se-
curity best practices recommended by HIPAA and GDPR, which aim to safeguard user interfaces
and sensitive user data [77, 14]. This supports the hypothesis by highlighting the importance of
protecting against such manipulations to preserve data integrity and comply with regulatory stan-
dards.

67

5.5 Conclusion

The findings from this investigation validate our hypothesis that the HL7 FHIR API’s security
framework and implementation protocols can effectively ensure the robust protection and privacy
of health data across various environments. Through addressing the identified vulnerabilities and
understanding their implications for HIPAA, GDPR, and other standards, this study contributes
valuable insights into improving HealthIT security practices and promoting regulatory compliance.

68

CHAPTER 6
DISCUSSION

6.1 General Findings and Regulatory Implications

This chapter analyzes the vulnerabilities identified during the security assessment of a FHIR Server
implementation, exploring how these issues align with recognized security frameworks like the
OWASP API Top 10 and regulatory requirements including HIPAA, the 21st Century Cures Act,
GDPR, and the HL7 FHIR API standards [55, 77, 1, 14, 26]. The focus is on abstracting these
findings to apply generally across various FHIR Server deployments and to discuss potential gaps
in the current regulations and standards that may contribute to these security vulnerabilities.

6.2 Interpretation of Findings

The comprehensive security assessment uncovered a spectrum of vulnerabilities, each underscoring
critical aspects of API security as emphasized by the OWASP API Top 10 [55]. From rate lim-
iting deficiencies that could enable denial-of-service attacks [58] to sophisticated DOM-based link
manipulation [59] and cross-domain referrer leakage [62], the vulnerabilities vary in complexity but
uniformly highlight the necessity for stringent input validation, secure configuration practices, and
robust logging and health checks.

6.2.1 Compliance with Security Standards

Client-Side Processing Risks

Significant risks in client-side processing, such as DOM-based attacks and XSS [59, 64], which are
not comprehensively addressed in the HL7 FHIR API standards, were identified. These standards
primarily focus on data structure and interoperability but lack depth in specifying defenses against
client-side vulnerabilities that are increasingly exploited in web applications [26].

Cross-Domain Data Handling

Similarly, cross-domain data handling poses substantial risks, particularly in environments where
sensitive health information is exchanged across different domains. Current guidelines in the HL7
FHIR API do not sufficiently cover security practices for cross-origin resource sharing (CORS)
and other security configurations that prevent data leakage and ensure data integrity during these
interactions [62].

69

6.2.2 Shortcomings in Current Legislation and Standards

Gaps in Legislative Coverage

While the 21st Century Cures Act and HIPAA establish comprehensive frameworks for access con-
trol and data protection during transmission [1, 77], they fall short in addressing modern web
vulnerabilities such as those arising from client-side interactions and cross-domain exchanges [73].
This creates a regulatory blind spot where compliance with the law does not necessarily equate to
robust security against current threat vectors.

Need for Modernization

This oversight is particularly concerning given the evolution of cyber threats and the increasing
sophistication of attack methodologies that exploit the very gaps left unguarded by these legisla-
tive frameworks [38]. There is a critical need for these regulations to evolve in line with modern
cybersecurity challenges.

6.3 Recommendations for Improving Standards and Regulations

Enhancing HL7 FHIR API Standards

To address these deficiencies, it is imperative that the HL7 FHIR API standards incorporate clear,
actionable security practices that protect against both server-side and client-side vulnerabilities.
For example, incorporating specific guidelines on implementing Content Security Policies (CSP) to
mitigate the risk of XSS and other client-side injections would be beneficial [57, 61].

Amending the 21st Century Cures Act and HIPAA

Legislatively, amendments to the 21st Century Cures Act and HIPAA should include requirements
for comprehensive security audits that evaluate both compliance and security posture against the
OWASP API Top 10 vulnerabilities [55]. This would ensure that covered entities are not only
compliant but are also effectively secured against prevalent web-based threats [77, 1].

Proposal for New Regulatory Measures

Introducing new regulatory measures that mandate regular security assessments aligned with these
updated standards can drive continuous improvement and adaptation to emerging threats. More-
over, requiring detailed documentation of security practices and vulnerabilities addressed in com-
pliance reports would enhance transparency and accountability [14, 47].

70

6.4 Enhancing Security Protocols

6.4.1 Rate Limiting and DDoS Protections

Necessity of Traffic Management in Healthcare APIs

Explicit rate limiting directives are essential for HealthIT as they directly mitigate the risks as-
sociated with DDoS attacks, which can cripple the availability of critical healthcare services [58].
The current FHIR API standards should be enhanced to include specific requirements for managing
traffic, thereby ensuring that HealthIT systems can maintain service continuity even under high load
or attack conditions. Incorporating these traffic management protocols into regulatory frameworks
would not only improve resilience against DDoS attacks but also align HealthIT systems with best
practices in cybersecurity, as emphasized in broader IT standards such as the NIST guidelines [47].

6.4.2 Input Validation and Sanitization

Preventing Common Vulnerabilities

The HL7 FHIR API documentation currently lacks comprehensive guidelines that address input
validation and sanitization; indeed, a gap that leaves implementations vulnerable to attacks such
as XSS and SQL Injection [64, 51]. By adopting and aligning with OWASP’s detailed recommen-
dations on input validation, the FHIR standards could significantly improve the security posture of
healthcare applications [55].

Enhancing Data Integrity and Security

Detailed guidelines for input validation and output encoding would help prevent unauthorized data
manipulation and loss of data integrity, which are critical in maintaining trust and safety in health-
care information systems [14, 35].

6.5 Refining Client-Side Data Handling Standards

6.5.1 Cross-Domain Data Sharing

Addressing Security in Cross-Domain Interactions

The 21st Century Cures Act and GDPR should be updated to explicitly address security consid-
erations necessary for safe cross-domain data sharing. This includes comprehensive guidelines on
secure data transmission techniques and protocols to prevent vulnerabilities such as data leakage
through referrer headers [1, 14].

71

Mitigating Referrer Leakage

Enhancing guidelines to include specific protections against referrer leakage will ensure that pa-
tient data remains secure when interacting across domains, which is increasingly common in the
integration of disparate healthcare systems and applications [62].

6.5.2 Clickjacking and Framebusting

Standardizing Anti-Clickjacking Measures

Clickjacking poses a significant threat to user interfaces of healthcare systems, where malicious
manipulation could lead to unauthorized access or data disclosure [56]. Standardizing the use of
X-Frame-Options and CSP headers across healthcare applications as part of FHIR API standards
and healthcare regulations would provide a robust defense against such attacks [57].

Incorporating Robust Framebusting Techniques

Beyond reactive measures, proactive framebusting techniques should be mandated to enhance the
security of patient interfaces from being embedded into potentially malicious sites, thus safeguarding
user interactions and data integrity [56].

6.6 Addressing Ambiguities in HL7 FHIR API Documentation

The HL7 FHIR API has become a cornerstone for developing interoperable healthcare applica-
tions [26]. However, the documentation, while extensive, occasionally lacks specificity in areas
critical for securing applications, such as authentication and API security. These ambiguities can
lead to inconsistent and potentially vulnerable implementations across the healthcare sector [38].

6.6.1 Improving Documentation Clarity

Clarification Needs

The current HL7 FHIR API documentation provides a framework for data exchange but often falls
short in guiding developers on secure implementation practices [30]. For instance, while it discusses
authentication mechanisms, there is insufficient detail about securing API endpoints against specific
threats. This lack of detail can result in applications that are vulnerable to attacks described in the
OWASP Top 10, such as injection attacks or improper asset management [51].

Examples of Secure Implementations

To rectify these issues, the documentation should include examples of secure coding practices tailored
to common healthcare scenarios [35]. For example, it could offer detailed guidance on implementing

72

OAuth 2.0 securely for different types of FHIR interactions, and showcase best practices for API
gateway configurations that protect against unauthorized data exposure [48].

Standardizing Security Practices

Moreover, integrating standard security practices directly into the FHIR specification could greatly
enhance its utility and safety [31]. By embedding examples that address the OWASP Top 10
vulnerabilities, developers would have a reliable template for creating secure applications. This
approach would not only streamline the development process but also elevate the overall security
posture of FHIR-based systems [55].

6.7 Recommendations for Documentation Enhancement

To improve the security and consistency of FHIR implementations, the following recommendations
are proposed for the HL7 FHIR API documentation:

• Expand Security Guidelines: Incorporate comprehensive security guidelines that cover all
aspects of the OWASP Top 10 [55]. This includes providing explicit instructions on securing
API endpoints, implementing robust authentication and authorization practices, and ensuring
data encryption both at rest and in transit [29].

• Include Practical Examples: Offer practical, real-world examples of how to implement
these security measures within the FHIR framework. These examples should cover various
use cases and deployment environments to provide developers with adaptable and scalable
solutions [70].

• Standardize Security Recommendations: Develop a standardized set of security recom-
mendations that can be universally applied across different HealthIT infrastructures [86]. This
standardization will help eliminate ambiguities and ensure that all FHIR implementations ad-
here to high security standards.

• Regular Updates and Feedback Loops: Establish a regular review process for the docu-
mentation that includes feedback from developers and security experts. This will ensure that
the guidelines remain relevant and effective against evolving security threats [46].

By enhancing the clarity and comprehensiveness of the HL7 FHIR API documentation, par-
ticularly in areas that currently lack depth, the HealthIT community can achieve higher levels of
interoperability and security. Implementing these recommendations will not only aid in developing
safer applications but also foster a more robust healthcare ecosystem resilient to cyber threats [20].

73

CHAPTER 7
CONCLUSION AND RECOMMENDATIONS FOR FUTURE

WORK

This chapter synthesizes the research findings on the security of IBM’s FHIR Server under the
mandates of the 21st Century Cures Act [1], discussing the broader implications of these findings
and proposing actionable recommendations for future work. The evolution from paper-based to
digital health records has introduced significant opportunities for improving healthcare delivery but
also substantial challenges, particularly in ensuring the security and interoperability of EHRs. The
implementation of the 21st Century Cures Act has accelerated the adoption of standards such as
HL7 FHIR, which aim to enhance how health data is shared across different systems [26].

This research has meticulously evaluated the security vulnerabilities inherent in IBM’s FHIR
Server implementations, uncovering critical weaknesses that could potentially compromise sensitive
health information and violate compliance with health data protection regulations such as HIPAA
and GDPR [38]. By addressing these security gaps, this chapter aims to outline a path forward for
integrating robust security measures into the development and deployment of HealthIT systems,
thereby enhancing patient data protection and system integrity.

The findings and recommendations discussed herein not only contribute to academic knowledge
but also have practical implications for healthcare providers, IT professionals, and policymakers.
They provide a foundation for developing more secure and effective HealthIT infrastructures, there-
fore supporting the overarching goal of the 21st Century Cures Act to achieve seamless and safe
health data interoperability[1].

7.1 Summary of Key Findings

7.1.1 Recap of the Evolution of HealthIT

The journey from manual paper records to digital EHRs marks a significant evolution in HealthIT.
This transition began before the 1960s when slow and cumbersome access to paper records was the
norm. The introduction of EHRs in the 1970s and 1980s brought digital technology into healthcare,
although standards for data format and security were largely undeveloped. By the 1990s and
early 2000s, digitization of health records expanded, yet lacked interoperability as providers used
siloed systems. It wasn’t until the mid-2000s, with initiatives like the Meaningful Use Incentive
Program and the development of HL7 standards, that structured guidelines for EHR storage and
security began to form [9]. Despite these advances, comprehensive standards for seamless access
and interoperability were not established, setting the stage for the legislative changes brought by
the 21st Century Cures Act [1].

74

7.1.2 Impact of the 21st Century Cures Act

The 21st Century Cures Act has been a pivotal legislation in overcoming historical challenges of
healthcare data interoperability. Signed into law in December 2016, the Act mandates the establish-
ment of interoperability standards and prohibits information blocking, fundamentally changing how
health data is shared across systems. It endorses the use of FHIR standards to facilitate the exchange
of health information [26]. This legislative framework aims to enhance patient access to their own
health data, streamline care coordination, and reduce healthcare costs by leveraging more efficient
data use. The Act’s implementation timeline underscores a progressive push towards fully realized
interoperability by 2023, with ongoing adaptations, such as the Payer-to-Payer interoperability set
to expand through 2026 [9].

7.1.3 Findings from Testing IBM’s FHIR Server

The security evaluation of IBM’s FHIR Server under the conditions mandated by the 21st Century
Cures Act revealed several critical vulnerabilities [52]. These findings underscore the necessity of
integrating robust security measures within FHIR server implementations to protect sensitive health
information and ensure compliance with regulations like HIPAA and GDPR. The vulnerabilities
identified range in severity from high to informational, with issues such as improper authentication
checks, lack of rate limiting, and vulnerabilities to cross-site scripting being most notable [52, 55].
These security flaws pose significant risks not only to data confidentiality and integrity but also to the
compliance status of healthcare entities using such compromised systems. The testing conditions,
including various deployment configurations and simulated attack scenarios, have highlighted the
need for comprehensive security strategies and regular updates to address these evolving threats [70,
69].

These key findings align with the outlined research questions, providing substantial answers and
insights into the security dynamics of modern HealthIT systems, particularly in the context of legal
and operational standards set forth by recent healthcare legislation [1].

7.2 Discussion of Implications

7.2.1 Integration of Security with Interoperability

The findings from the research underscore a crucial aspect: security must be integrated seamlessly
into the framework of interoperable HealthIT systems, not bolted on as an afterthought. The
widespread adoption of the FHIR standard, as mandated by the 21st Century Cures Act, offers a
structured pathway to achieve interoperability across different healthcare systems. However, this
research has shown that without robust security measures, the same pathways that facilitate data
flow can also become vulnerabilities[55, 22].

75

The vulnerabilities identified in IBM’s FHIR Server—ranging from issues in role-based authen-
tication to insufficient rate limiting—highlight potential entry points for security breaches. These
issues exemplify the need for a security-by-design approach where security considerations are in-
grained in the development and deployment phases of HealthIT systems. Integrating security with
interoperability not only protects sensitive health information but also strengthens the trust of end
users in the digital health ecosystem. By embedding security protocols within the interoperability
standards, HealthIT can safeguard against data breaches while maintaining seamless and efficient
health data exchange [25, 41].

7.2.2 Policy and Compliance

The security challenges uncovered through the testing of IBM’s FHIR Server have significant impli-
cations for compliance with healthcare regulations, particularly HIPAA and GDPR. Vulnerabilities
such as insufficient encryption, lack of proper authentication, and potential for data leakage can
lead to non-compliance with these regulations, which emphasize the confidentiality, integrity, and
availability of patient information [87, 76].

This research suggests that enhanced security protocols, such as comprehensive vulnerability
assessments and regular security audits, are not merely technical necessities but are also critical for
regulatory compliance. For healthcare organizations, adopting these enhanced security measures can
mitigate risks associated with data breaches and unauthorized access, thus aligning with HIPAA
and GDPR requirements more effectively [13, 72].

Moreover, the integration of advanced security practices into the HealthIT development lifecycle
can help institutions not only meet but exceed regulatory expectations, establishing a higher stan-
dard of patient data protection. Policymakers might also consider these findings when updating
or establishing new HealthIT security guidelines, ensuring that they address current and emerging
security challenges comprehensively [39, 10].

7.3 Contributions to the Field

7.3.1 Advancements in HealthIT Security

This research significantly advances the understanding of security in HealthIT, particularly within
the context of FHIR implementations. By systematically identifying and evaluating vulnerabilities
in a key FHIR server, IBM’s FHIR Server, this study has uncovered critical insights into the security
challenges faced by HealthIT systems in the era of mandatory interoperability standards as required
by the 21st Century Cures Act [1].

The analysis not only detailed specific security weaknesses but also demonstrated how these
vulnerabilities could be exploited if not properly managed. This includes the identification of high-
risk issues such as Broken Object Level Authorization and the susceptibility of systems to Denial-of-

76

Service (DoS) attacks [58, 60]. By addressing these vulnerabilities through a structured penetration
testing approach, the research provides a roadmap for securing FHIR implementations, thereby
enhancing the overall security posture of HealthIT systems. This contribution is particularly vital
as it addresses both the theoretical and practical aspects of cybersecurity in an area that directly
impacts patient privacy and the integrity of healthcare services [4, 88].

7.3.2 Practical Security Measures

The practical security measures developed as part of this research provide actionable guidelines that
can be adopted not only by IBM’s FHIR Server users but also by developers and administrators
of other HealthIT systems. These measures include, but are not limited to, the implementation of
enhanced role-based access controls, the application of stricter authentication mechanisms, and the
incorporation of comprehensive logging and monitoring practices to detect and respond to potential
security threats effectively [25, 50].

One of the key security best practices recommended is the use of OAuth 2.0 and OpenID
Connect for authentication to ensure that PHI is accessed and shared under strict confidentiality
conditions, thereby safeguarding against unauthorized access. Additionally, the establishment of
robust encryption protocols for data at rest and in transit as part of a layered security strategy was
emphasized to prevent data breaches [25, 59].

The application of these security measures in IBM’s FHIR Server and their potential adaptation
for other similar systems represent a substantial contribution to the field. These best practices not
only enhance the security features within FHIR servers but also contribute to the broader objective
of achieving HIPAA and GDPR compliance, thereby supporting the secure exchange of health data
across different platforms and technologies [38, 46].

In summary, this thesis not only sheds light on the specific vulnerabilities of a widely used
HealthIT framework but also provides a set of validated security enhancements that can be gener-
alized across the industry. This dual focus on both problem identification and solution provision
enriches the academic and practical landscapes of HealthIT security, offering significant contri-
butions that pave the way for safer healthcare data operations in an increasingly interconnected
environment [12, 2].

7.4 Addressing the Limitations

7.4.1 Scope of Testing

This research undertook a focused examination of IBM’s FHIR Server, applying a rigorous method-
ology in penetration testing to uncover security vulnerabilities. However, it is crucial to acknowledge
the inherent limitations associated with the scope of these tests. Specifically, the penetration testing

77

was conducted under controlled conditions with predefined configurations and environments that
may not comprehensively represent all operational settings [52].

The configurations tested were selected based on their common usage scenarios and perceived
security implications. These included default settings and those recommended by best practice
guides [25]. Despite this, the diverse nature of real-world deployments means that not all possible
configurations, integration patterns, or usage scenarios were covered. This selective approach was
necessary to provide depth to the analysis but does mean that some less common yet potentially
vulnerable configurations might not have been assessed.

Moreover, the environment in which the tests were conducted was isolated from the internet and
other networks that could introduce additional variables, such as network-based attacks or those
involving multiple service interactions [59]. The exclusion of these elements from testing scenarios
limits the applicability of findings to environments that are not air-gapped or similarly controlled.

7.4.2 Generalizability of Findings

The findings from this study, while insightful for IBM’s FHIR Server, carry limitations in their ap-
plicability to other FHIR server implementations or broader HealthIT systems [50, 25]. Each FHIR
server may have unique implementation details, operational environments, and security measures
that could affect the relevance of the vulnerabilities discovered in this study.

Although the vulnerabilities identified provide a valuable baseline for what issues might exist
in similar systems, they do not account for the specific software architectures, coding practices, or
security strategies employed by other FHIR servers [25]. For instance, different FHIR servers might
use alternative methods for authentication, data validation, and session management, which could
mitigate or exacerbate the specific vulnerabilities identified in IBM’s implementation.

Furthermore, the use of IBM’s FHIR Server as a case study provides in-depth insights into its
security posture but does not extend these findings to all FHIR implementations uniformly. The
security recommendations made are based on the observed test results and are intended as guidance
that should be adapted and verified against the specific conditions and security requirements of
other systems [55].

7.5 Recommendations

7.5.1 For HealthIT Development

This research underscores the necessity for robust security frameworks in the development of
HealthIT systems, particularly those involving FHIR servers. In light of the vulnerabilities identified
in IBM’s FHIR Server, it is recommended that HealthIT developers adopt a multi-layered security
approach. This approach should include, but not be limited to, measures that address a wide range
of cyber threats, including the increasingly pervasive issue of ransomware.

78

Understanding Ransomware

Ransomware is a type of malicious software or "payload" designed to block access to a computer
system or data, typically by encrypting the data, until a ransom is paid to the attacker. Ransomware
attacks can have devastating effects, particularly in the healthcare sector, where access to critical
patient data is essential for day-to-day operations. These attacks often exploit known vulnerabilities
in software systems, weak authentication methods, or unsecured network endpoints to infiltrate and
compromise systems.

Given the sensitive nature of health data, healthcare organizations are frequent targets of ran-
somware attacks. Such incidents can disrupt healthcare services, lead to the unauthorized disclosure
of patient information, and incur significant financial and reputational damage. Therefore, it is
crucial that HealthIT systems are equipped to defend against ransomware through proactive and
comprehensive security measures.

• Regular Security Audits: HealthIT systems should undergo periodic security audits using
both automated tools and manual penetration testing to identify and mitigate vulnerabilities
promptly [86]. These audits should be comprehensive, covering all layers of the application
stack—from the network interface to the application endpoints. Regular audits are essential
not only for preventing unauthorized access but also for reducing the risk of ransomware
attacks, which often exploit unpatched vulnerabilities.

• Enhanced Authentication and Authorization Controls: Developers should implement and en-
force stronger authentication mechanisms such as Multi-Factor Authentication (MFA) and
robust authorization protocols to ensure that access controls are both strict and dynamically
adaptable to new security threats [38]. These measures are critical in protecting systems from
ransomware, which frequently gains initial access through compromised credentials or weak
authentication practices.

• Encryption Practices: Data encryption should be mandatory not only in transit but also at
rest. Utilizing up-to-date encryption protocols can help protect sensitive health information
against breaches. Effective encryption is a crucial line of defense in the event of a ransomware
attack, ensuring that even if data is accessed or exfiltrated, it remains unreadable without the
decryption keys.

• Error Handling and Logging: Implement refined error handling that does not expose sensi-
tive data in error messages or logs. Ensure logs are comprehensive and protected against
unauthorized access [61]. Robust logging and monitoring are essential for detecting suspi-
cious activities early, which can be indicative of an impending ransomware attack. Properly
secured logs also help in the post-incident analysis to understand and mitigate the impact of
such attacks.

79

• Dependency Management: Regularly update and patch third-party libraries and dependen-
cies to protect against vulnerabilities that could be exploited in outdated components [39, 10].
Ransomware often targets known vulnerabilities in software components, making prompt up-
dates and patch management critical in minimizing this risk.

By integrating these security measures, developers can significantly enhance the resilience of
HealthIT systems against a wide range of cyber threats, including the growing threat of ransomware,
which specifically targets vulnerabilities in health information systems.

7.5.2 Policy Recommendations

In light of the findings from this study and the current landscape of HealthIT security, there is
a clear need for updated policies that better reflect the complexities of modern healthcare data
exchanges. Recommended changes include:

• Strengthening Compliance Requirements: Regulatory bodies should consider updating their
guidelines to incorporate requirements for regular security audits, vulnerability disclosures,
and the implementation of advanced security protocols such as zero-trust architectures [72, 12].
These updates should explicitly address the threat of ransomware by ensuring that HealthIT
systems are resilient against common attack vectors and are equipped to respond quickly to
such incidents.

• Incentives for Security Enhancements: Policymakers should create incentives for healthcare
providers to adopt enhanced security measures. This could be in the form of tax breaks, subsi-
dies, or public recognition schemes that encourage adherence to high security standards [9, 1].
Special consideration should be given to incentivizing practices that directly reduce the risk
of ransomware, such as regular patching, backup strategies, and user education programs.

• Guidelines for API Security: Given the pivotal role of APIs in healthcare interoperability,
specific guidelines should be developed for API security in healthcare applications. These
should align with the latest standards from organizations such as OWASP and include detailed
protocols for secure coding, testing, and deployment [55]. Strengthening API security is vital
in mitigating the risks of ransomware, which often exploits unsecured endpoints to infiltrate
systems.

• Data Breach Notification Laws: Strengthen data breach notification laws to ensure that they
require timely and transparent communication to both the affected individuals and regulators.
This will not only increase transparency but also push institutions towards maintaining high
preventive measures [11, 21]. Given the rapid escalation and damage potential of ransomware
attacks, swift notification and response are crucial in limiting their impact.

80

• Education and Training: Implement mandatory education and training programs for HealthIT
personnel on current best security practices and emerging threats. Continuous learning should
be a cornerstone of policy to adapt to the rapidly evolving cyber threat landscape [3]. Edu-
cation on recognizing and preventing ransomware, along with general cybersecurity hygiene,
should be a primary focus of these programs.

By adopting these policy recommendations, stakeholders can create a more secure and compli-
ant environment that enhances patient trust and protects sensitive health information from cyber
threats, including the increasingly prevalent threat of ransomware.

7.6 Future Research Directions

7.6.1 Advanced Security Assessments

This thesis has highlighted critical vulnerabilities within IBM’s FHIR Server when tested under
specific conditions [52]; however, the evolving nature of cyber threats necessitates a broader scope
of security assessments. Future research should focus on:

• Diverse Testing Scenarios: Conduct vulnerability assessments across a variety of deploy-
ment scenarios, including different network configurations, operating systems, and usage con-
texts [59, 58]. This would help uncover potential security weaknesses that are specific to
particular environments or are overlooked in standard testing protocols.

• Utilization of Newer Security Frameworks: Leverage emerging security frameworks and stan-
dards to evaluate their effectiveness in enhancing API security [55, 41]. Comparing these new
methodologies against established practices will provide insights into their relative strengths
and weaknesses, aiding in the development of more robust security strategies.

• Automated Security Testing Tools: Develop and validate automated tools that can continu-
ously scan and detect vulnerabilities in real-time [86]. This will not only increase the efficiency
of security assessments but also reduce the time between vulnerability discovery and remedi-
ation.

• Interdisciplinary Approach: Combine insights from software engineering, cybersecurity, and
healthcare informatics to develop comprehensive security solutions [46, 73]. This integrated
approach can address the unique challenges of securing HealthIT systems against sophisticated
cyber threats.

These expanded assessments will enable a more thorough understanding of potential security
issues and help develop more effective countermeasures to protect sensitive health data.

81

7.6.2 Incorporation of Emerging Technologies

The rapid evolution of technology offers new opportunities to enhance the security and efficiency
of HealthIT systems. Specifically, the incorporation of blockchain technology presents a promising
avenue for future research:

• Blockchain for Data Integrity and Transparency: Explore the use of blockchain as a means
to ensure data integrity and auditability in HealthIT systems. Blockchain’s inherent char-
acteristics, such as decentralization, immutability, and transparency, make it well-suited to
secure medical data exchanges and maintain comprehensive access logs that are resistant to
tampering.

• Smart Contracts for Automated Compliance: Investigate the use of smart contracts to au-
tomate compliance with healthcare regulations such as HIPAA and GDPR [14, 77]. Smart
contracts can enforce privacy rules and consent directives at the point of data exchange, po-
tentially reducing the compliance burden on healthcare providers and enhancing patient trust.

• Blockchain-Enhanced Consent Management: Develop blockchain-based solutions for dynamic
consent management in healthcare, allowing patients to control who accesses their data and un-
der what conditions [77]. This would empower patients and support compliance with patient-
centric regulations.

• Interoperability and Data Portability: Use blockchain to create a standardized framework
for health data interoperability. This framework could facilitate secure data sharing across
different HealthIT systems and geographic borders, thus supporting global health initiatives
and research collaborations [26].

• Pilot Projects and Case Studies: Conduct pilot projects to assess the practical implications
of integrating blockchain technology into existing HealthIT infrastructures [50]. Documenting
these case studies will provide valuable lessons and guidelines for broader implementation.

By exploring these technologies, researchers can lead the way in securing and optimizing HealthIT
systems for the future, ensuring they are robust against evolving cyber threats while enhancing their
functionality and user trust. This proactive approach to incorporating emerging technologies will
not only safeguard sensitive health information but also advance the field towards more integrated
and patient-centered care models [9].

82

7.7 Concluding Remarks

7.7.1 Summarize the Urgency and Relevance

The timeliness and critical need for this research cannot be overstated, particularly in light of the
sweeping advancements in HealthIT and stringent regulatory requirements imposed by initiatives
like the 21st Century Cures Act [1]. This thesis has emerged at a pivotal moment, as healthcare
systems worldwide are mandated to embrace interoperability and enhance patient data accessibility
while ensuring uncompromised security. The urgency of these developments is magnified by the
rapid evolution of digital threats that target the vulnerabilities within emerging HealthIT infras-
tructures [8, 2]. Our exploration into the security of FHIR servers, specifically IBM’s FHIR Server,
addresses a direct and urgent need to fortify the foundations upon which healthcare data exchange
is built, ensuring that these systems are both robust and compliant with current and foreseeable
regulatory frameworks [12].

7.7.2 Final Thoughts

This research holds significant potential to influence future developments in HealthIT security and
interoperability. By systematically uncovering and addressing security vulnerabilities in a key com-
ponent of HealthIT infrastructure, this study not only advances our understanding of specific se-
curity flaws but also provides a blueprint for enhancing system security that could be applicable
across a wide range of healthcare environments. Furthermore, the methodologies and findings de-
tailed herein offer a foundation for ongoing research and development efforts that can adapt to
evolving security challenges and regulatory demands [6, 3].

The integration of comprehensive security measures with healthcare interoperability standards,
as demonstrated through this thesis, provides a proactive approach to mitigating risks in real-time.
This is crucial for maintaining the integrity and confidentiality of patient data, a core component of
patient care and trust in the healthcare system [20]. As we move forward, the insights gained from
this research should inspire and inform the development of more secure, efficient, and compliant
HealthIT systems, ultimately contributing to safer, more reliable, and patient-centric healthcare
delivery [11].

7.8 Encouragement for Practical Implementation

7.8.1 Guidelines for Implementation

To facilitate the practical application of the findings from this research, it is crucial to provide
healthcare providers and IT managers with actionable guidelines that can be readily implemented.
The following steps are recommended to enhance the security and interoperability of HealthIT
systems:

83

• Adopt SMART on FHIR Protocols: Ensure that all HealthIT systems implement SMART
on FHIR protocols to enhance authentication and secure data access [24]. This framework
supports OAuth 2.0 and OpenID Connect, providing a robust basis for secure interactions
between users and health data [26].

• Regular Penetration Testing: Conduct regular penetration testing using updated methodolo-
gies to identify and mitigate vulnerabilities. This should include testing against the OWASP
API Top 10 risks, ensuring that security measures are comprehensive and current [55].

• Continuous Security Training: Offer ongoing training for developers and IT staff on the latest
security practices and compliance requirements. Focus on developing an understanding of
common vulnerabilities and the best practices for securing HealthIT infrastructures.

• Implement Rate Limiting and Proper Logging: Install rate limiting to prevent abuse of APIs
and ensure that logging mechanisms are in place to detect and respond to security incidents
promptly [60]. These logs should be centralized and monitored continuously.

• Certificate Management: Establish a rigorous certificate management process to ensure that
all digital certificates are up-to-date and comply with industry standards. This will prevent
issues related to untrusted certificates and enhance the overall security of the system [61].

7.8.2 Encourage Adoption of Best Practices

To enhance the security and efficacy of HealthIT systems broadly, it is essential to promote the
widespread adoption of the security best practices developed through this research. Advocating for
these practices includes:

• Policy Development: Work with regulatory bodies to develop policies that embed these se-
curity best practices into the regulatory framework [1, 9]. This will ensure that all HealthIT
systems adhere to high security standards, reducing the risk of data breaches.

• Community Engagement: Engage with the broader HealthIT community through seminars,
workshops, and conferences to share findings and best practices [13]. This promotes a collab-
orative approach to securing HealthIT systems and fosters an environment of shared respon-
sibility [25].

• Resource Sharing: Create open-access resources, such as white papers and implementation
guides, that detail the security practices and their benefits [25]. Making these resources freely
available encourages their adoption and helps institutions implement them without substantial
resource investments.

84

• Partnerships with Tech Providers: Establish partnerships with technology providers to ensure
that security features are built into HealthIT products from the ground up [71, 25]. This
will make it easier for healthcare providers to adopt secure systems and reduce the burden of
securing legacy systems.

By following these guidelines and advocating for the adoption of best practices, healthcare
providers and IT managers can significantly enhance the security and interoperability of their sys-
tems. This not only protects patient data but also supports the efficient and effective delivery of
healthcare services, contributing to better patient outcomes and enhanced trust in the healthcare
system.

85

APPENDIX A
GLOSSARY OF TERMS

This appendix provides a list of terms and their definitions used throughout the research.
1. API (Application Programming Interface): A set of rules, protocols, and tools that allows

different software applications to communicate with each other.

2. API Key: A unique identifier used to authenticate and grant access to an API.

3. Authentication: The process of verifying the identity of a user, device, or system.

4. Authorization: The process of determining the actions and resources a user, device, or system
is allowed to access.

5. CORS (Cross-Origin Resource Sharing): A mechanism that allows many resources (e.g., fonts,
JavaScript) on a web page to be requested from another domain outside the domain from which
the first resource was served.

6. CSRF (Cross-Site Request Forgery): An attack that tricks a user into executing unwanted
actions on a web application in which they’re currently authenticated.

7. Data Exfiltration: The unauthorized transfer of data from a targeted system to an external
system, usually performed by an attacker.

8. DevSecOps: A set of practices that integrates security into the software development and
deployment process.

9. EHR (Electronic Health Record): A digital version of a patient’s paper chart and medical
history.

10. Endpoint: A communication channel that allows two systems to exchange data, typically
exposed by an API.

11. FHIR (Fast Healthcare Interoperability Resources): A standard describing data formats and
elements (known as "resources") and an API for exchanging electronic health records.

12. GDPR (General Data Protection Regulation): A regulation in EU law on data protection and
privacy in the European Union and the European Economic Area.

13. HIPAA (Health Insurance Portability and Accountability Act): A US law designed to provide
privacy standards to protect patients’ medical records and other health information.

86

14. HL7 (Health Level Seven): A set of international standards for the transfer of clinical and
administrative data between software applications used by various healthcare providers.

15. mTLS (Mutual Transport Layer Security): An extension of TLS that requires both the client
and server to authenticate each other during the secure connection establishment process.

16. OAuth 2.0 (Open Authentication version 2.0): An authorization framework that enables ap-
plications to obtain limited access to user accounts on an HTTP service.

17. ONC (Office of the National Coordinator for Health Information Technology): A division of
the US Department of Health and Human Services (HHS) that is responsible for advancing
health information technology.

18. OWASP (Open Web Application Security Project): A nonprofit organization that aims to
improve the security of software through community-led open-source projects.

19. Rate Limiting: A technique used to control the rate at which an API can receive requests,
typically used to prevent abuse and ensure fair usage.

20. RBAC (Role-Based Access Control): An approach to restricting system access to authorized
users based on their role within an organization.

21. SMART (Substitutable Medical Applications and Reusable Technologies): A standard that
allows health applications and authentication applications to run on different EHR systems.

22. SQL Injection: A code injection technique that attackers use to exploit vulnerabilities in a
web application’s database layer.

23. TLS (Transport Layer Security): A cryptographic protocol designed to provide communica-
tions security over a computer network.

24. Vulnerability: A weakness in a system that can be exploited by an attacker to gain unautho-
rized access or perform malicious actions.

25. Zero-Trust: A security model that assumes no trust by default and requires strict verification
of identities and permissions for all users, devices, and systems.

87

APPENDIX B
LIST OF ACRONYMS

This appendix provides a list of acronyms used throughout the research and their corresponding
meanings.

1. API: Application Programming Interface

2. CORS: Cross-Origin Resource Sharing

3. CSRF: Cross-Site Request Forgery

4. CSP: Content Security Policy

5. CVSS: Common Vulnerability Scoring System

6. EHR: Electronic Health Record

7. FHIR: Fast Healthcare Interoperability Resources

8. GDPR: General Data Protection Regulation

9. HealthIT: Health Information Technology

10. HIPAA: Health Insurance Portability and Accountability Act

11. HL7: Health Level Seven International

12. IDS: Intrusion Detection System

13. mTLS: Mutual Transport Layer Security

14. ONC: Office of the National Coordinator for Health Information Technology

15. OWASP: Open Web Application Security Project

16. ePHI: Electronic Protected Health Information

17. RBAC: Role-Based Access Control

18. SIEM: Security Information and Event Management

19. SMART: Substitutable Medical Applications and Reusable Technologies

20. SQL: Structured Query Language

21. TLS: Transport Layer Security

22. XSS: Cross-Site Scripting

88

APPENDIX C
EQUIPMENT SPECIFICATIONS

The equipment being used during testing include:
1. 2023 Apple Mac Studio with an Apple M2 Ultra chipset featuring 24-core CPU, 76-core GPU,

and 32-core Neural Engine with 128GB of unified memory and 2TB SSD storage.

2. ASUS PN51-E1 with AMD Ryzen 7 5700U featuring 8-core CPU, 8-core GPU with 32GB
DDR4-3200 memory and 1TB Kingston NV2 M.2 PCIE SSD storage.

I created an Ubuntu 22.04.02 (x86_64 emulation) VM on the Mac Studio using a licensed version
of Parallels Desktop for Mac Pro Edition v19.3.0. Settings were configured as follows:

1. Options:

Startup and Shutdown: Startup and shutdown manually

Optimization: No limit

Sharing: None

Applications: None

Full Screen: Defaults with None

Picture in Picture:

Keep on top of other windows

Show window on all Spaces

Opacity: 4th marker

Travel Mode: Never/Never

More Options:

Time: Sync from Mac

Share Mac clipboard

Preserve text formatting

Update Parallels Tools automatically

2. Hardware:

CPU & Memory:

Processors: 4

Memory: 8192 MB

89

Use Rosetta to run x86-64 binaries with Adaptive Hypervisor

Graphics: Enable 3D acceleration

Mouse & Keyboard: Default

Shared Printers: Default

Network: Defaults with Source set to Ethernet

Sound & Camera: Defaults

USB & Bluetooth: Defaults

Hard Disk: Defaults with Disk capacity: 64GB

CD/DVD: Disconnected

Boot Order: Defaults

3. Security: Defaults

4. Backup: Defaults

90

APPENDIX D
INSTALLATION AND CONFIGURATION OF IBM FHIR

SERVER WITH SMART AUTHENTICATION

D.1 Directory Structure

fhir/

config/

Dockerfile

localhost.crt

ibm/

Dockerfile

fhir-smart-5.1.1.jar

D.2 IBM FHIR Server Docker Configuration

The IBM FHIR Server is customized using a Docker container. Below is the Dockerfile used in the
fhir/ibm directory, which outlines the steps for setting up the FHIR server with SMART on FHIR
authentication:

1 # Use the official IBM FHIR Server image
2 FROM ghcr.io/linuxforhealth/fhir -server
3

4 # Define a build -time variable with a default value
5 ARG OAUTH_HOST =127.0.0.1
6

7 # Add the SMART on FHIR authentication support jar
8 COPY fhir -smart -5.1.1. jar /opt/ol/wlp/usr/servers/defaultServer/userlib/
9

10 # Move the JWT configuration file to the server ’s default configuration
11 RUN mv /opt/ol/wlp/usr/servers/defaultServer/configDropins/disabled/jwtRS.xml /opt

/ol/wlp/usr/servers/defaultServer/configDropins/defaults/
12

13 # Update the OAuth provider and resource server URLs using the build -time variable
14 RUN sed -i "s|group:https :// localhost :8443/ auth/realms/test/fhirUser|group:https

://${OAUTH_HOST }:8443/ auth/realms/fhir/fhirUser|g" /opt/ol/wlp/usr/servers/
defaultServer/configDropins/defaults/jwtRS.xml

15 RUN sed -i "s|http :// keycloak :8080/ auth/realms/test/protocol/openid -connect/certs|
http ://${OAUTH_HOST }:8080/ auth/realms/fhir/protocol/openid -connect/certs|g" /
opt/ol/wlp/usr/servers/defaultServer/configDropins/defaults/jwtRS.xml

16 RUN sed -i "s|https :// localhost :8443/ auth/realms/test|https ://${OAUTH_HOST }:8443/
auth/realms/fhir|g" /opt/ol/wlp/usr/servers/defaultServer/configDropins/

91

defaults/jwtRS.xml
17 RUN sed -i "s|http ://fhir -server :9080/ fhir -server/api/v4|https :// localhost :9443/

fhir -server/api/v4|g" /opt/ol/wlp/usr/servers/defaultServer/configDropins/
defaults/jwtRS.xml

18

19 # Configure OAuth endpoints in the FHIR server configuration
20 RUN sed -i "s|https://<host >:9443/ oauth2/endpoint/oauth2 -provider/registration|

https ://${OAUTH_HOST }:8443/ auth/realms/fhir/clients -registrations/openid -
connect|g" /opt/ol/wlp/usr/servers/defaultServer/config/default/fhir -server -
config.json

21 RUN sed -i "s|https://<host >:9443/ oauth2/endpoint/oauth2 -provider/authorize|https
://${OAUTH_HOST }:8443/ auth/realms/fhir/protocol/openid -connect/auth|g" /opt/ol/
wlp/usr/servers/defaultServer/config/default/fhir -server -config.json

22 RUN sed -i "s|https://<host >:9443/ oauth2/endpoint/oauth2 -provider/token|https ://${
OAUTH_HOST }:8443/ auth/realms/fhir/protocol/openid -connect/token|g" /opt/ol/wlp/
usr/servers/defaultServer/config/default/fhir -server -config.json

23 RUN sed -i ’/" oauth": {/,/},/ s/" enabled ": false ,/" enabled ": true ,/g’ /opt/ol/wlp/
usr/servers/defaultServer/config/default/fhir -server -config.json

D.3 Building and Running the FHIR Server

The Docker images are built and run using the following commands:

1 cd fhir/ibm
2 sudo docker build --build -arg OAUTH_HOST =[IP_ADDRESS] -t my-fhir -server .
3 sudo docker run -d --platform linux/amd64 --name ibm -fhir -p 9443:9443 -e

BOOTSTRAP_DB=true my -fhir -server

D.4 Running SMART Keycloak

The Docker image is run using the following command:

1 sudo docker run -d --platform linux/amd64 --name smart -keycloak -p 8080:8080 -p
8443:8443 -e KEYCLOAK_USER=admin -e KEYCLOAK_PASSWORD=admin alvearie/smart -
keycloak

D.5 Configuring Keycloak with SMART Authentication

Keycloak is used for authentication. The Dockerfile in the fhir/config directory sets up Keycloak:

1 # Use the Alvearie Keycloak configuration image
2 FROM alvearie/keycloak -config
3

4 # Copy the localhost certificate into the container

92

5 COPY localhost.crt /usr/local/share/ca-certificates/
6

7 # Display the JAVA_HOME and the contents of its security directory
8 RUN JAVA_HOME=$(dirname $(dirname $(readlink -f $(which java)))) \&& \
9 echo "Java Home: $JAVA_HOME" \&& \

10 ls -lah $JAVA_HOME/lib/security/
11

12 # Switch to root user to modify security settings
13 USER root
14

15 # Update the Java keystore to include the localhost certificate
16 RUN chmod 644 $JAVA_HOME/lib/security/cacerts \&& \
17 keytool -import -trustcacerts -cacerts -alias localhost -file /usr/local/share

/ca -certificates/localhost.crt -storepass changeit -noprompt
18

19 # Switch back to the default user
20 USER 1001

D.6 Building and Running the Keycloak Configuration

1 cd ../ config
2 echo | openssl s_client -servername localhost -connect localhost :8443 2>/dev/null

| openssl x509 > localhost.crt
3 sudo docker build -t my-keycloak -config .
4 sudo docker run --platform linux/amd64 --name my -keycloak -config -e

KEYCLOAK_BASE_URL=https :// localhost :8443/ auth -e KEYCLOAK_USER=admin -e
KEYCLOAK_PASSWORD=admin -e KEYCLOAK_REALM=fhir -e FHIR_BASE_URL=https ://
localhost :9443/ fhir -server/api/v4 --network=host my-keycloak -config

D.7 Testing with Postman

Testing configurations with Postman are used to ensure the FHIR server’s compliance with SMART
on FHIR authentication standards and to identify any security vulnerabilities.

D.7.1 Postman Configuration

1. Create a collection named "FHIR Server".

2. Import API documentation from HL7

3. Set the ’baseUrl’ environment variable to ’https://[ipaddress_of_vm]:9443/fhir-server/api/v4’
to direct API calls to the configured server.

93

D.7.2 Server Configuration for SMART Authentication

Executed access to the server’s shell to edit configurations:

1 sudo docker exec -it ibm -fhir /bin/bash

Verify the JWT Settings are correct and update the IP address as follows:

1 cat /opt/ol/wlp/usr/servers/defaultServer/configDropins/defaults/jwtRS.xml

Expected contents of ’jwtRS.xml’:

1 <server description="fhir -server">
2 <featureManager >
3 <!-- mpJwt -1.1 is already enabled in the default server.xml , but it doesn’

t hurt to repeat it here -->
4 <feature >mpJwt -1.1 </ feature >
5 </featureManager >
6

7 <!-- Override the application -bnd binding of the main webapp -->
8 <webApplication contextRoot ="fhir -server/api/v4" id="fhir -server -webapp"

location ="fhir -server.war" name="fhir -server -webapp">
9 <application -bnd id="bind">

10 <security -role id=" users" name=" FHIRUsers">
11 <group id=" usersGroup" access -id=" group:https: //[ipaddress_of_vm

]:8443/auth/realms/fhir/fhirUser"/>
12 </security -role >
13 </application -bnd >
14 </webApplication >
15

16 <!-- The MP JWT configuration that injects the caller ’s JWT into a
ResourceScoped bean for inspection. -->

17 <mpJwt id="jwtConsumer"
18 jwksUri="http: //[ipaddress_of_vm]:8080/auth/realms/fhir/protocol/openid -

connect/certs"
19 issuer="https: //[ipaddress_of_vm]:8443/auth/realms/fhir"
20 audiences="https: // localhost:9443/fhir -server/api/v4"
21 userNameAttribute="sub"
22 groupNameAttribute="group"
23 authFilterRef="filter"/>
24

25 <authFilter id="filter">
26 <requestUrl urlPattern="/fhir -server" />
27 <requestUrl matchType="notContain" urlPattern="/fhir -server/api/v4/

metadata" />
28 <requestUrl matchType="notContain" urlPattern="/fhir -server/api/v4/.well -

known/smart -configuration" />
29 </authFilter >
30 </server >

94

Verify the FHIR Server Configuration Settings are correct as follows:

1 cat /opt/ol/wlp/usr/servers/defaultServer/config/default/fhir -server -config.json

Expected contents of ’fhir-server-config.json’:

1 {
2 "__comment": "FHIR Server configuration",
3 "fhirServer": {
4 "core": {
5 "tenantIdHeaderName": "X-FHIR -TENANT -ID",
6 "datastoreIdHeaderName": "X-FHIR -DSID",
7 "originalRequestUriHeaderName": "X-FHIR -FORWARDED -URL",
8 "checkReferenceTypes": true ,
9 "conditionalDeleteMaxNumber": 10,

10 "__comment": "The Server Registry Resource Provider is a server -wide
setting. The default is false , and the CI changes to true in the build and test
.",

11 "serverRegistryResourceProviderEnabled": false ,
12 "disabledOperations": "",
13 "defaultFhirVersion": "4.0"
14 },
15 "security": {
16 "cors": true ,
17 "basic": {
18 "enabled": true
19 },
20 "certificates": {
21 "enabled": true
22 },
23 "oauth": {
24 "enabled": true ,
25 "regUrl": "https ://[ipaddress_of_vm]:8443/ auth/realms/fhir/

clients -registrations/openid -connect",
26 "authUrl": "https ://[ipaddress_of_vm]:8443/ auth/realms/fhir/

protocol/openid -connect/auth",
27 "tokenUrl": "https ://[ipaddress_of_vm]:8443/ auth/realms/fhir/

protocol/openid -connect/token",
28 "smart": {
29 "enabled": true ,
30 "scopes": ["openid", "profile", "fhirUser", "launch/patient",

"patient /*.*", "offline_access"],
31 "capabilities": [
32 "sso -openid -connect",
33 "launch -standalone",
34 "client -public",
35 "client -confidential -symmetric",
36 "permission -offline",

95

37 "context -standalone -patient",
38 "permission -patient"
39]
40 }
41 },
42 "validateBinarySecurityContext" : true
43 },
44 "notifications": {
45 "common": {
46 "__comment_includeResourceTypes": [
47 "QuestionnaireResponse",
48 "CarePlan",
49 "MedicationAdministration",
50 "Device",
51 "DeviceComponent",
52 "DeviceMetric",
53 "MedicationOrder",
54 "Observation"
55]
56 },
57 "websocket": {
58 "__comment": "only enable this for single -tenant , single -server

deployments",
59 "enabled": false
60 },
61 "kafka": {
62 "enabled": false ,
63 "topicName": "fhirNotifications",
64 "connectionProperties": {
65 "group.id": "securing -kafka -group",
66 "bootstrap.servers": "localhost :9093",
67 "security.protocol": "SSL",
68 "ssl.truststore.location": "resources/security/kafka.client.

truststore.p12",
69 "ssl.truststore.password": "change -password",
70 "ssl.keystore.location": "resources/security/kafka.client.

keystore.p12",
71 "ssl.keystore.password": "change -password",
72 "ssl.key.password": "change -password",
73 "ssl.truststore.type": "PKCS12",
74 "ssl.keystore.type": "PKCS12",
75 "acks": "all",
76 "retries": "60",
77 "request.timeout.ms": "10000",
78 "max.block.ms": "60000",
79 "max.in.flight.requests.per.connection": "5"

96

80 }
81 },
82 "nats": {
83 "enabled": false ,
84 "cluster": "nats -streaming",
85 "channel": "fhirNotifications",
86 "clientId": "fhir -server",
87 "servers": "nats ://nats -node1 :4222, nats ://nats -node2 :4222 , nats ://

nats -node3 :4222",
88 "useTLS": false ,
89 "truststoreLocation": "resources/security/nats.client.truststore.

jks",
90 "truststorePassword": "change -password",
91 "keystoreLocation": "resources/security/nats.client.keystore.jks",
92 "keystorePassword": "change -password"
93 }
94 },
95 "audit": {
96 "serviceClassName" : "org.linuxforhealth.fhir.audit.impl.NopService",
97 "serviceProperties" : {
98 }
99 },

100 "persistence": {
101 "factoryClassname": "org.linuxforhealth.fhir.persistence.jdbc.

FHIRPersistenceJDBCFactory",
102 "common": {
103 "__comment": "Configuration properties common to all persistence

layer implementations",
104 "updateCreateEnabled": true
105 },
106 "jdbc": {
107 "__comment": "Configuration properties for the JDBC persistence

implementation",
108 "enableCodeSystemsCache": true ,
109 "enableParameterNamesCache": true ,
110 "enableResourceTypesCache": true
111 },
112 "datasources": {
113 "default": {
114 "jndiName": "jdbc/bootstrap_default_default",
115 "type": "derby",
116 "currentSchema": "APP"
117 },
118 "_db2sample": {
119 "type": "db2",
120 "tenantKey": "<the -tenant -key >",

97

121 "currentSchema": "fhirdata",
122 "hints" : {
123 "search.reopt": "ONCE"
124 }
125 },
126 "_pgsample": {
127 "type": "postgresql",
128 "currentSchema": "fhirdata",
129 "searchOptimizerOptions": {
130 "from_collapse_limit": 12,
131 "join_collapse_limit": 12
132 }
133 }
134 }
135 },
136 "bulkdata": {
137 "enabled": true ,
138 "core": {
139 "api": {
140 "url": "https :// localhost :9443/ ibm/api/batch",
141 "user": "fhiradmin",
142 "password": "change -password",
143 "truststore": "resources/security/fhirTrustStore.p12",
144 "truststorePassword": "change -password",
145 "trustAll": true
146 },
147 "cos" : {
148 "partUploadTriggerSizeMB": 10,
149 "objectSizeThresholdMB": 200,
150 "objectResourceCountThreshold": 200000 ,
151 "useServerTruststore": true ,
152 "presignedExpiry": 86400
153 },
154 "file" : {
155 "writeTriggerSizeMB": 1,
156 "sizeThresholdMB": 200,
157 "resourceCountThreshold": 200000
158 },
159 "pageSize": 100,
160 "batchIdEncodingKey": "change -password",
161 "maxPartitions": 5,
162 "maxInputs": 5,
163 "maxChunkReadTime": "90000",
164 "systemExportImpl": "fast",
165 "defaultExportProvider": "default",
166 "defaultImportProvider": "default"

98

167 },
168 "storageProviders": {
169 "default" : {
170 "type": "file",
171 "_type": "ibm -cos|aws -s3|file|https|azure -blob",
172 "validBaseUrls": [],
173 "fileBase": "/output/bulkdata",
174 "bucketName": "fhir -performance",
175 "location": "us",
176 "endpointInternal": "https ://s3.us-east.cloud -object -storage.

appdomain.cloud",
177 "endpointExternal": "https ://s3.us-east.cloud -object -storage.

appdomain.cloud",
178 "auth" : {
179 "type": "hmac",
180 "accessKeyId": "key",
181 "secretAccessKey": "secret"
182 },
183 "_iam_auth" : {
184 "type": "iam",
185 "iamApiKey": "apiKey",
186 "iamResourceInstanceId": "resourceId"
187 },
188 "enableParquet": false ,
189 "disableBaseUrlValidation": true ,
190 "disableOperationOutcomes": true ,
191 "duplicationCheck": false ,
192 "validateResources": false ,
193 "create": false ,
194 "presigned": true
195 }
196 }
197 },
198 "operations": {
199 "erase": {
200 "enabled": true ,
201 "allowedRoles": [
202 "FHIROperationAdmin",
203 "FHIRUsers"
204]
205 }
206 }
207 }
208 }

99

D.8 Creating and Testing Patient Resources

D.8.1 OAuth 2.0 Configuration in Postman

1. Navigate to the Auth tab.

2. Set the following OAuth 2.0 settings:

(a) Token Name: fhirToken

(b) Grant Type: Authorization Code

(c) Callback URL: http://localhost:4567/inferno/static/redirect

(d) Auth URL: https://[ipaddress_of_vm]:8443/auth/realms/fhir/protocol/openid-connect/auth

(e) Access Token URL: https://[ipaddress_of_vm]:8443/auth/realms/fhir/protocol/openid-
connect/token

(f) Client ID: inferno

(g) Scope: launch/patient openid fhirUser offline_access patient/*.read

(h) State: 1234

(i) Client Authentication: Send as Basic Auth header

3. Click Get New Access Token and enter the username: fhiruser and password: change-password.

4. Consent and proceed. On the Token Details dialog, scroll to the bottom and look for the
patient attribute. The value of this attribute should come from the corresponding resourceId
attribute of the user in Keycloak and this should be Patient1.

5. Scroll back to the top of the Token Details page and click Use Token. This will automatically
associate this access token with your request.

D.8.2 Create a Patient Resource

Paste the following Patient resource into the Body (as raw json):

1 {
2 "resourceType": "Patient",
3 "id": "Patient1",
4 "text": {
5 "status": "generated",
6 "div": "<div xmlns=\"http :// www.w3.org /1999/ xhtml\"><p style=\"border: 1px #

661 aff solid; background -color: #e6e6ff; padding: 10px;\">Rick Sanchez
male , age: 70 years (approx .) (Medical record number :\ u00a012345\u00a0(use:\
u00a0USUAL ,\ u00a0period :\u00a02001 -05-06 --> (ongoing)))</p><hr/><table
class =\" grid\"><tr><td style =\" background -color: #f3f5da \" title =\" Record is

100

active\">Active:</td ><td>true </td ><td style =\" background -color: #f3f5da \" title
=\" Known status of Patient\">Deceased:</td><td colspan =\"3\" >false </td ></tr ><tr
><td style =\" background -color: #f3f5da \" title =\" Alternate names (see the one
above)\">Alt Names:</td ><td colspan =\"3\">Morty Smith (OFFICIAL) <
li >Morty Smith (MAIDEN)</td ></tr ><tr ><td style =\" background -color: #
f3f5da \" title =\" Ways to contact the Patient\">Contact Details:</td ><td colspan
=\"3\">-unknown -(HOME)ph: (03) 5555 6473(WORK)ph:
(03) 3410 5613(MOBILE) ph: (03) 5555 8834(OLD) 1 Smith
Residence , Earth (C -137) </td ></tr><tr><td style =\" background -color: #
f3f5da \" title =\" Nominated Contact: Next -of-Kin\">Next -of-Kin:</td><td colspan
=\"3\">Beth Smith (female) 1 Smith Residence , Earth (C-137) +33 (237) 998327 Valid Period:
2012 --> (ongoing) </td ></tr><tr><td style =\" background -color: #
f3f5da \" title =\" Patient Links\">Links:</td><td colspan =\"3\">Managing
Organization: Organization /1
\" Gastroenterology \"</td ></tr ></table ></div >"

7 },
8 "identifier": [{
9 "use": "usual",

10 "type": {
11 "coding": [{
12 "system": "http :// terminology.hl7.org/CodeSystem/v2 -0203",
13 "code": "MR"
14 }]
15 },
16 "system": "urn:oid :1.2.36.146.595.217.0.1",
17 "value": "12345",
18 "period": {
19 "start": "2001 -05 -06"
20 },
21 "assigner": {
22 "display": "Interdimensional Medical Service"
23 }
24 }],
25 "active": true ,
26 "name": [{
27 "use": "official",
28 "family": "Smith",
29 "given": ["Morty"]
30 },
31 {
32 "use": "usual",
33 "given": ["Rick"]
34 },
35 {
36 "use": "maiden",

101

37 "family": "Sanchez",
38 "given": ["Rick"],
39 "period": {
40 "end": "2002"
41 }
42 }],
43 "telecom": [{
44 "use": "home"
45 },
46 {
47 "system": "phone",
48 "value": "(03) 5555 6473",
49 "use": "work",
50 "rank": 1
51 },
52 {
53 "system": "phone",
54 "value": "(03) 3410 5613",
55 "use": "mobile",
56 "rank": 2
57 },
58 {
59 "system": "phone",
60 "value": "(03) 5555 8834",
61 "use": "old",
62 "period": {
63 "end": "2014"
64 }
65 }],
66 "gender": "male",
67 "birthDate": "1954 -01 -12",
68 "_birthDate": {
69 "extension": [{
70 "url": "http ://hl7.org/fhir/StructureDefinition/patient -birthTime",
71 "valueDateTime": "1954 -01 -12 T14 :35:45 -05:00"
72 }]
73 },
74 "deceasedBoolean": false ,
75 "address": [{
76 "use": "home",
77 "type": "both",
78 "text": "1 Smith Residence , Earth (C -137)",
79 "line": ["1 Smith Residence"],
80 "city": "Earth",
81 "district": "C-137",
82 "state": "Unknown",

102

83 "postalCode": "99999",
84 "period": {
85 "start": "1954 -01 -12"
86 }
87 }],
88 "contact": [{
89 "relationship": [{
90 "coding": [{
91 "system": "http :// terminology.hl7.org/CodeSystem/v2 -0131",
92 "code": "N"
93 }]
94 }],
95 "name": {
96 "family": "Smith",
97 "given": ["Beth"]
98 },
99 "telecom": [{

100 "system": "phone",
101 "value": "+33 (237) 998327"
102 }],
103 "address": {
104 "use": "home",
105 "type": "both",
106 "line": ["1 Smith Residence"],
107 "city": "Earth",
108 "district": "C-137",
109 "state": "Unknown",
110 "postalCode": "99999",
111 "period": {
112 "start": "1954 -01 -12"
113 }
114 },
115 "gender": "female",
116 "period": {
117 "start": "2012"
118 }
119 }],
120 "managingOrganization": {
121 "reference": "Organization /1"
122 }
123 }

Verify you receive a 201 response:

1 POST https ://192.168.86.43:9443/ fhir -server/api/v4/Patient
2 201
3 550 ms

103

4 Warning: Self signed certificate in certificate chain
5 POST /fhir -server/api/v4/Patient HTTP /1.1
6 Content -Type: application/fhir+json
7 Accept: application/fhir+json
8 X-FHIR -TENANT -ID: default
9 Authorization: Bearer

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICIwcG9sblh2VGVhMzl2ZThRc2YyMkhfYTgteER5VkpENG1WQ09PaVlNLXkwIn0
.
eyJleHAiOjE3MTM2MTczNTgsImlhdCI6MTcxMzYxNzA1OCwiYXV0aF90aW1lIjoxNzEzNjE2ODYxLCJqdGkiOiJlZmVkYzMyYi1mZWVkLTQ3ODQtYWY3NS05YjhmOGY1ZGYwYTkiLCJpc3MiOiJodHRwczovLzE5Mi4xNjguODYuNDM6ODQ0My9hdXRoL3JlYWxtcy9maGlyIiwiYXVkIjoiaHR0cHM6Ly9sb2NhbGhvc3Q6OTQ0My9maGlyLXNlcnZlci9hcGkvdjQiLCJzdWIiOiJhYzgyYWY0Zi0xOGUxLTRjYTUtYjM1Yy1hYzRkNDYzNzk4NGEiLCJ0eXAiOiJCZWFyZXIiLCJhenAiOiJpbmZlcm5vIiwic2Vzc2lvbl9zdGF0ZSI6ImFlN2JjZGI4LTQ0NzctNDEyZi1iM2M4LTUwOTJjOGQyZmU4NiIsInNjb3BlIjoib3BlbmlkIHBhdGllbnQvKi5yZWFkIGZoaXJVc2VyIHBhdGllbnQvKi53cml0ZSBsYXVuY2gvcGF0aWVudCBvZmZsaW5lX2FjY2VzcyIsInNpZCI6ImFlN2JjZGI4LTQ0NzctNDEyZi1iM2M4LTUwOTJjOGQyZmU4NiIsInBhdGllbnRfaWQiOiJQYXRpZW50MSIsImdyb3VwIjpbImZoaXJVc2VyIl19
.
FSjLBFXXJ7jOMDwbytjuJN0sOKZATmWbgyH5HKgUsCGbGsVenS4iE6iObTJxBfbPogp8Dhll3KaObFopjJRrn53qF4033SpFRKZLxEI072c1yjNHAwQGZMGYzKgXU7eJLNzJEWkIDKB263RNN7ge9yuqwfLM
-07 d5ak5lUUBl_QoU9VmjVGH2YRHeGCMDZE4KfnBXhpxjGcaXm3Jh7FwQpf9hgCYACjh4m69sHKLx -
vGKulMwxdHCvHacLsgSjxDvX8 -GuzLJk1RJvp9 -T6V1Sgt -
DsIlhh1NesYe2OTsYoW508OleRlqWpJN3Yw5QOgsEiV -1 mreh5XRw5H1Ob6 -g

10 User -Agent: PostmanRuntime /7.36.1
11 Postman -Token: 4855d2bd -dc2d -4dca -ac97 -fea790697835
12 Host: 192.168.86.43:9443
13 Accept -Encoding: gzip , deflate , br
14 Connection: keep -alive
15 Content -Length: 4347
16

17
18

19 HTTP /1.1 201 Created
20 Location: https ://192.168.86.43:9443/ fhir -server/api/v4/Patient /18 efb893c46 -47350

b2a -fb70 -4068 -9933 - ce8d6dc6e257/_history /1
21 ETag: W/"1"
22 Last -Modified: Sat , 20 Apr 2024 12:44:18 GMT
23 Date: Sat , 20 Apr 2024 12:44:19 GMT
24 Content -Length: 0
25 Content -Language: en -US

Then, create a second Patient with the "id": "Patient2", and verify you receive a second 201
response.

1 POST https ://192.168.86.43:9443/ fhir -server/api/v4/Patient
2 201
3 98 ms
4 Warning: Self signed certificate in certificate chain
5 POST /fhir -server/api/v4/Patient HTTP /1.1
6 Content -Type: application/fhir+json
7 Accept: application/fhir+json
8 X-FHIR -TENANT -ID: default
9 Authorization: Bearer

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICIwcG9sblh2VGVhMzl2ZThRc2YyMkhfYTgteER5VkpENG1WQ09PaVlNLXkwIn0
.
eyJleHAiOjE3MTM2MTczNTgsImlhdCI6MTcxMzYxNzA1OCwiYXV0aF90aW1lIjoxNzEzNjE2ODYxLCJqdGkiOiJlZmVkYzMyYi1mZWVkLTQ3ODQtYWY3NS05YjhmOGY1ZGYwYTkiLCJpc3MiOiJodHRwczovLzE5Mi4xNjguODYuNDM6ODQ0My9hdXRoL3JlYWxtcy9maGlyIiwiYXVkIjoiaHR0cHM6Ly9sb2NhbGhvc3Q6OTQ0My9maGlyLXNlcnZlci9hcGkvdjQiLCJzdWIiOiJhYzgyYWY0Zi0xOGUxLTRjYTUtYjM1Yy1hYzRkNDYzNzk4NGEiLCJ0eXAiOiJCZWFyZXIiLCJhenAiOiJpbmZlcm5vIiwic2Vzc2lvbl9zdGF0ZSI6ImFlN2JjZGI4LTQ0NzctNDEyZi1iM2M4LTUwOTJjOGQyZmU4NiIsInNjb3BlIjoib3BlbmlkIHBhdGllbnQvKi5yZWFkIGZoaXJVc2VyIHBhdGllbnQvKi53cml0ZSBsYXVuY2gvcGF0aWVudCBvZmZsaW5lX2FjY2VzcyIsInNpZCI6ImFlN2JjZGI4LTQ0NzctNDEyZi1iM2M4LTUwOTJjOGQyZmU4NiIsInBhdGllbnRfaWQiOiJQYXRpZW50MSIsImdyb3VwIjpbImZoaXJVc2VyIl19

104

.
FSjLBFXXJ7jOMDwbytjuJN0sOKZATmWbgyH5HKgUsCGbGsVenS4iE6iObTJxBfbPogp8Dhll3KaObFopjJRrn53qF4033SpFRKZLxEI072c1yjNHAwQGZMGYzKgXU7eJLNzJEWkIDKB263RNN7ge9yuqwfLM
-07 d5ak5lUUBl_QoU9VmjVGH2YRHeGCMDZE4KfnBXhpxjGcaXm3Jh7FwQpf9hgCYACjh4m69sHKLx -
vGKulMwxdHCvHacLsgSjxDvX8 -GuzLJk1RJvp9 -T6V1Sgt -
DsIlhh1NesYe2OTsYoW508OleRlqWpJN3Yw5QOgsEiV -1 mreh5XRw5H1Ob6 -g

10 User -Agent: PostmanRuntime /7.36.1
11 Postman -Token: c9a3e367 -1790 -46d0 -8c4e -cbc903f6238c
12 Host: 192.168.86.43:9443
13 Accept -Encoding: gzip , deflate , br
14 Connection: keep -alive
15 Content -Length: 4347
16

17
18

19 HTTP /1.1 201 Created
20 Location: https ://192.168.86.43:9443/ fhir -server/api/v4/Patient /18 efb8975f0 -493

dfb06 -9f66 -4cef -8495 -209 fa3949daa/_history /1
21 ETag: W/"1"
22 Last -Modified: Sat , 20 Apr 2024 12:44:33 GMT
23 Date: Sat , 20 Apr 2024 12:44:33 GMT
24 Content -Length: 0
25 Content -Language: en -US

Then select the GET Patient resource and setup the Authorization fields as follows:

1. Navigate to the Auth tab.

2. Set the following OAuth 2.0 settings:

(a) Token Name: fhirToken

(b) Grant Type: Authorization Code

(c) Callback URL: http://localhost:4567/inferno/static/redirect

(d) Auth URL: https://192.168.86.43:8443/auth/realms/fhir/protocol/openid-connect/auth

(e) Access Token URL: https://192.168.86.43:8443/auth/realms/fhir/protocol/openid-connect/token

(f) Client ID: inferno

(g) Scope: launch/patient openid fhirUser offline_access patient/*.read

(h) State: 1234

(i) Client Authentication: Send as Basic Auth header

3. Click Get New Access Token and enter the username: fhiruser and password: change-password.

4. Consent and proceed. On the Token Details dialog, scroll to the bottom and look for the
patient attribute. The value of this attribute should come from the corresponding resourceId
attribute of the user in Keycloak and this should be Patient1.

105

5. Scroll back to the top of the Token Details page and click Use Token. This will automatically
associate this access token with your request.

Send the command and verify the results of your response. My request returned both the
Patients which was not expected. This highlights a crucial area requiring careful attention to ensure
compliance with FHIR and HIPAA regulations. Documentation must be improved to account for
establishing Role Based Authentication.

106

APPENDIX E
SETTING UP AND CONFIGURING A REVERSE PROXY

E.1 Requirements

• A Linux server running Apache HTTP Server.

• Valid TLS certificates for your domain.

• Firewall is on and blocking all by default.

• The IBM FHIR Server and Keycloak authentication system running on internal ports that
are not exposed to the public.

E.2 Prepare Your Environment

1. Install Apache HTTP Server:

1 sudo apt update
2 sudo apt install apache2
3

2. Ensure mod_proxy and mod_ssl are enabled:

1 sudo a2enmod proxy
2 sudo a2enmod proxy_http
3 sudo a2enmod ssl
4 sudo systemctl restart apache2
5

E.3 Configure SSL/TLS Certificates

1. Obtain SSL/TLS certificates for your subdomains using Let’s Encrypt:

1 sudo apt install certbot python3 -certbot -apache
2 sudo certbot --apache -d fhir.yourdomain.com -d auth.yourdomain.com
3

Follow the prompts to configure HTTPS.

107

E.4 Configure Apache as a Reverse Proxy

1. Create Apache configuration files for your subdomains: Navigate to the sites-available direc-
tory:

1 cd /etc/apache2/sites -available/
2

Create a configuration file for the FHIR server:

1 sudo nano fhir.yourdomain.com.conf
2

Insert the following configuration:

1 <VirtualHost *:443>
2 ServerName fhir.yourdomain.com
3 ProxyPreserveHost On
4 ProxyPass / https :// localhost :9443/
5 ProxyPassReverse / https :// localhost :9443/
6 SSLEngine on
7 SSLCertificateFile /etc/letsencrypt/live/fhir.yourdomain.com/fullchain

.pem
8 SSLCertificateKeyFile /etc/letsencrypt/live/fhir.yourdomain.com/

privkey.pem
9 </VirtualHost >

10

Create a similar configuration file for the Keycloak server:

1 sudo nano auth.yourdomain.com.conf
2

Insert the following configuration:

1 <VirtualHost *:443>
2 ServerName auth.yourdomain.com
3 ProxyPreserveHost On
4 ProxyPass / https :// localhost :8443/
5 ProxyPassReverse / https :// localhost :8443/
6 SSLEngine on
7 SSLCertificateFile /etc/letsencrypt/live/auth.yourdomain.com/fullchain

.pem
8 SSLCertificateKeyFile /etc/letsencrypt/live/auth.yourdomain.com/

privkey.pem
9 </VirtualHost >

10

2. Enable the new sites and restart Apache to apply the changes:

108

1 sudo a2ensite fhir.yourdomain.com.conf
2 sudo a2ensite auth.yourdomain.com.conf
3 sudo systemctl restart apache2
4

E.5 Verify and Monitor

1. Verify the Configuration: Access your subdomains via a web browser to ensure they are
correctly set up.

2. Monitor Apache logs for errors or security issues:

1 tail -f /var/log/apache2/error.log
2

109

APPENDIX F
SETTING UP AND CONFIGURING WAZUH MANAGER

F.1 Introduction

Wazuh is an open-source security monitoring platform that provides a comprehensive solution for
detecting intrusions, monitoring integrity, auditing configurations, and managing vulnerabilities.
The Wazuh Manager serves as the central component of this platform, responsible for collecting
and analyzing security data gathered from various agents deployed across an organization’s infras-
tructure. It offers capabilities like real-time monitoring, threat detection, and incident response,
making it a crucial tool for maintaining security compliance and protecting sensitive data.

Setting up a Wazuh Manager allows organizations to gain deeper visibility into their systems,
detect potential threats early, and respond to security incidents more effectively. This guide pro-
vides step-by-step instructions for installing Wazuh Manager on Ubuntu 22.04 and configuring it
with specific features such as Auditing of Commands, Detecting Hidden Processes, Network IDS
Integration, and File Integrity Monitoring, all of which are essential for a robust security posture.

F.2 Prerequisites

Before you begin, ensure your system meets the following requirements:

• Ubuntu 22.04 OS

• sudo or root privileges

• An internet connection

F.3 Installation of Wazuh Manager

1. Update your package manager and install the necessary packages:

1 sudo apt update \&& sudo apt upgrade -y
2 sudo apt install curl apt -transport -https lsb -release gnupg2 -y
3

2. Import the GPG key for the Wazuh repository:

1 curl -s https :// packages.wazuh.com/key/GPG -KEY -WAZUH | gpg --dearmor |
sudo tee /usr/share/keyrings/wazuh -archive -keyring.gpg >/dev/null

2

110

3. Add the Wazuh repository to your system:

1 echo "deb [signed -by=/usr/share/keyrings/wazuh -archive -keyring.gpg] https
:// packages.wazuh.com/4.x/apt/ stable main" | sudo tee /etc/apt/sources.
list.d/wazuh.list

2

4. Update the package information and install Wazuh Manager:

1 sudo apt update
2 sudo apt install wazuh -manager -y
3

5. Verify that Wazuh Manager is running:

1 systemctl status wazuh -manager
2

F.4 Configuration Features

F.4.1 Auditing of Commands

1. Edit the Wazuh configuration file to enable command auditing:

1 sudo nano /var/ossec/etc/ossec.conf
2

Add the following within the <global> section:

1 <command_audit >yes</command_audit >
2

F.4.2 Detecting Hidden Processes

1. Enable hidden process detection by adding to the ossec.conf:

1 <rootcheck >
2 <check_sys >yes</check_sys >
3 <check_trojans >yes</check_trojans >
4 <check_dev >yes</check_dev >
5 </rootcheck >
6

F.4.3 Network IDS Integration

1. To integrate with Network IDS, such as Snort or Suricata, configure the external integration
module in ossec.conf:

111

1 <integration >
2 <name>snort</name>
3 <group >snort</group>
4 <hook_url >http://your -ids -server/api/</hook_url >
5 </integration >
6

F.4.4 File Integrity Monitoring

1. Configure File Integrity Monitoring by editing the ossec.conf file:

1 <syscheck >
2 <frequency >43200</frequency >
3 <directories >/important/directory </directories >
4 </syscheck >
5

112

APPENDIX G
SETTING UP AND CONFIGURING WAZUH AGENT

G.1 Introduction

The Wazuh agent is a critical component of the Wazuh security platform, responsible for monitor-
ing and collecting data from the systems it is installed on. This data is then sent to the Wazuh
Manager for analysis, allowing for comprehensive security monitoring across an organization’s in-
frastructure. The Wazuh agent plays a key role in detecting intrusions, monitoring file integrity,
auditing commands, and identifying hidden processes that may indicate malicious activity.

Installing and configuring the Wazuh agent on individual systems enhances the overall secu-
rity posture by providing real-time visibility into potential threats and ensuring compliance with
security policies. This chapter outlines the step-by-step process for installing and configuring the
Wazuh agent on Ubuntu 22.04, including the setup of essential features such as auditing commands,
detecting hidden processes, integrating with a network IDS, and monitoring file integrity.

G.2 Installation Procedure

G.2.1 System Preparation

Before installing the Wazuh agent, ensure the system is up to date:

1 sudo apt update \&& sudo apt upgrade -y
2 sudo apt install curl apt -transport -https lsb -release -y

G.2.2 Installing the Wazuh Agent

1. Import the Wazuh repository GPG key:

1 curl -s https :// packages.wazuh.com/key/GPG -KEY -WAZUH | gpg --dearmor |
sudo tee /usr/share/keyrings/wazuh -archive -keyring.gpg >/dev/null

2

2. Add the Wazuh repository:

1 echo "deb [signed -by=/usr/share/keyrings/wazuh -archive -keyring.gpg] https
:// packages.wazuh.com/4.x/apt/ stable main" | sudo tee /etc/apt/sources.
list.d/wazuh.list

2

3. Update the package database and install the Wazuh agent:

113

1 sudo apt update
2 sudo apt install wazuh -agent
3

G.3 Configuration of Features

G.3.1 Command Auditing

Enable command auditing to track executed commands, aiding in compliance and forensic analysis:

1 sudo nano /var/ossec/etc/ossec.conf

Add the following configuration:

1 <localfile >
2 <log_format >audit</log_format >
3 <location >/var/log/audit/audit.log</location >
4 </localfile >

G.3.2 Hidden Process Detection

Detect hidden processes that may indicate the presence of rootkits or other malicious software:

1 <rootcheck >
2 <disabled >no</disabled >
3 <check_sys >yes</check_sys >
4 <check_trojans >yes</check_trojans >
5 <check_dev >yes</check_dev >
6 </rootcheck >

G.3.3 Network IDS Integration

Integrate with network intrusion detection systems to enhance network security monitoring:

1 <integration >
2 <name>generic </name>
3 <group >network </group >
4 <hook_url >http://example -ids -system/api</hook_url >
5 </integration >

G.3.4 File Integrity Monitoring

Monitor critical system files for unauthorized changes:

1 <syscheck >
2 <frequency >3600</frequency >
3 <directories >/etc ,/usr/bin ,/usr/sbin</directories >
4 </syscheck >

114

APPENDIX H
PENETRATION TESTING

H.1 Integrating Postman with BurpSuite Pro for Penetration Test-
ing

This section outlines the step-by-step procedure for integrating Postman with BurpSuite Pro to
perform a comprehensive penetration test on a FHIR API. The approach is to utilize Postman for
executing API calls which are then intercepted and analyzed by BurpSuite Pro for vulnerabilities.

H.1.1 Setting Up BurpSuite Proxy

1. Open BurpSuite and create a new project named IBM-FHIR.

2. Go to the Proxy tab and then to the Options sub-tab.

3. Ensure the proxy listener is active on 127.0.0.1:8080 (or your preferred port).

4. Check the box to make this proxy listener Support invisible proxying for handling all
types of traffic.

H.1.2 Configuring Postman to Use BurpSuite as a Proxy

1. Open Postman and go to the Settings section.

2. Click on the Proxy tab and configure the following settings:

• Set the Global Proxy Configuration to ON.

• Enter 127.0.0.1 in the Proxy Server field and 8080 in the Port field, matching the
BurpSuite listener settings.

3. Close the settings panel. Postman is now configured to route all traffic through BurpSuite.

H.1.3 Performing the Penetration Test

1. In Postman, ensure you have a collection of API calls you want to test. These should be set
up to target the API at http://192.168.86.49:8080 or the relevant IP and port.

2. Execute the API calls from Postman. Each request will pass through BurpSuite, allowing it
to intercept and modify the requests and responses if necessary.

115

H.1.4 Analyzing the Traffic with BurpSuite

1. Switch to the HTTP History tab in BurpSuite’s Proxy section to view the complete list of
intercepted requests and responses.

2. You can filter and review these entries to identify potential security issues or misconfigurations
in the API calls.

3. Use BurpSuite’s scanning capabilities to perform an automated scan on the captured traffic:

(a) Right-click on a request and select Do an active scan.

(b) Adjust the scan settings according to the requirements of your penetration testing pro-
tocol.

H.1.5 Generating and Exporting the Report

1. Navigate to the Target tab, then to the Site map sub-tab.

2. Select the API base URL (e.g., http://192.168.86.49:8080) and right-click.

3. Hover over Report and select HTML report.

4. Configure the report settings:

(a) Choose to include all details such as full requests and responses.

(b) Organize issues by type with a comprehensive table of contents.

(c) Save the report with a meaningful name like IBM-FHIR Burp Deep Scan Report.

5. Review and distribute the report as part of your security audit documentation.

H.2 Using OWASP ZAP for Penetration Testing

This section outlines the step-by-step procedure for using OWASP ZAP to perform a comprehensive
penetration test on a FHIR API. The goal is to utilize ZAP’s capabilities to automatically scan and
manually test the API for security vulnerabilities.

H.2.1 Setting Up OWASP ZAP

1. Open OWASP ZAP.

2. Create a new session by selecting File > New Session, or open an existing one if applicable.
Save the session with an appropriate name such as FHIR API Security Test.

3. Configure the local proxy settings in ZAP:

116

• Go to Tools > Options > Local Proxy.

• Set the Address to 127.0.0.1 and Port to 8080 or another port of your choice. Ensure
this proxy setting does not conflict with other services.

H.2.2 Configuring Your API Client to Use ZAP as a Proxy

1. Configure your API client (e.g., Postman, custom application) to route traffic through ZAP:

• Set the proxy settings in your client to 127.0.0.1 and port 8080 or the port you config-
ured in ZAP.

2. Ensure that SSL certificates are handled properly if the API uses HTTPS:

• Import ZAP’s Root CA certificate into your client if necessary to avoid SSL errors. This
certificate can be generated in ZAP under Tools > Options > Dynamic SSL Certificates.

H.2.3 Performing the Penetration Test

1. Navigate to the Quick Start tab in ZAP.

2. Enter the URL of the FHIR API endpoint you wish to test in the URL to attack field and
click Attack. This will trigger ZAP to start spidering and scanning the target API for vul-
nerabilities.

3. Monitor the progress in the Bottom Panel where the Active Scan tab shows details about
the scan process and findings.

H.2.4 Manual Testing and Active Scanning

1. For deeper analysis, use the Sites tree to browse discovered content and manually explore
specific functionalities by sending custom requests and observing responses via the Request

and Response tabs.

2. Use the Active Scan feature for intensive testing:

• Right-click on a specific node in the Sites tree and select Attack > Active Scan.

• Configure the scan settings according to the specific security testing needs of your API.

H.2.5 Reviewing Findings and Generating Reports

1. Review the alerts generated by ZAP in the Alerts tab, detailing potential vulnerabilities and
their impacts, along with recommendations for mitigation.

2. Generate a comprehensive report:

117

• Go to Report > Generate HTML Report.

• Customize the report details and save the report with an appropriate name such as FHIR
API Security Assessment.

118

APPENDIX I
IBM FHIR SERVER PENETRATION TEST REPORT

119

BIBLIOGRAPHY

[1] 21st century cures act. Congress.gov, 2016. Available: https://www.congress.gov/bill/

114th-congress/house-bill/6/text Accessed: 01/28/2024.

[2] 42Crunch. Issue 74: Vulnerability in login with facebook, api security talks. API Security
News, 2020. Available online; Accessed: 01-Oct-2022.

[3] M. Bettendorf. Api growth rate continues to skyrocket in 2020 and into 2021. Postman Blog,
2022. Available online; Accessed: 01-Oct-2022.

[4] F. A. Bhuiyan, M. B. Sharif, and A. Rahma. Security bug report usage for software vulnerability
research: A systematic mapping study. IEEE Access, Feb 2021.

[5] S. Bigelow. 6 cloud vulnerabilities that can cripple your environment. TechTarget Search-
CloudComputing. Available online; Accessed: date of access.

[6] T. Brewster. How hackers broke equifax: Exploiting a patchable vulnerability. Forbes, 2017.
Available online; Accessed: 01-Oct-2022.

[7] Bugcrowd. #1 crowdsourced cybersecurity platform. Available online; Accessed: 20-Oct-2022.

[8] E. Chickowski. 2018 sees api breaches surge with no relief in sight. Security Boulevard, 2018.
Available online; Accessed: 01-Oct-2022.

[9] Cms interoperability and patient access final rule (cms-9115-
f). cms.gov, 2020. Available: https://www.cms.gov/priorities/

key-initiatives/burden-reduction/policies-and-regulations/

cms-interoperability-and-patient-access-final-rule-cms-9115-f Accessed:
01/28/2024.

[10] CVE. Common vulnerabilities and exposures. Available online; Accessed: 20-Oct-2022.

[11] R. Davis. Insecure api cloud computing: The causes and solutions. ExtraHop, 2020. Available
online; Accessed: 01-Oct-2022.

[12] J. A. Diaz-Rojas, J. O. Ocharan-Hernandez, J. C. Perez-Arriaga, and X. Limon. Web api
security vulnerabilities and mitigation mechanisms: A systematic mapping study. In 2021
9th International Conference in Software Engineering Research and Innovation (CONISOFT),
pages 207–218, 2021.

120

[13] Aaron Yi Ding, G. De Jesus, M. Limon, and M. Janssen. Ethical hacking for boosting iot
vulnerability management: a first look into bug bounty programs and responsible disclosure. In
Proceedings of the Eighth International Conference on Telecommunications and Remote Sensing
- ICTRS ’19, pages 49–55, Rhodes, Greece, 2019. ACM Press.

[14] European Parliament and Council of the European Union. General data protection regulation
(gdpr). https://eur-lex.europa.eu/eli/reg/2016/679/oj, 2016. Accessed: 2024-04-21.

[15] HAPI FHIR. Hapi fhir documentation. HAPI FHIR Website, 2024. Available: https://

hapifhir.io/hapi-fhir/docs/ Accessed: Date of Access.

[16] HAPI FHIR. Hapi fhir github repository. GitHub, 2024. Available: https://github.com/

hapifhir/hapi-fhir Accessed: Date of Access.

[17] HL7 FHIR. Smart app launch framework. https://build.fhir.org/ig/HL7/

smart-app-launch/app-launch.html, 2024. Accessed: 2024-07-04.

[18] Final data. Google Sheets, 2024. Available upon request: https://docs.google.com/

spreadsheets/d/1ZKu8xTl5bDPMVredObPHrSF5rkej982l4xxl0hoXzP8/edit?usp=share_link

Accessed: Date of Access.

[19] Centers for Medicare & Medicaid Services (CMS). Meaningful use incentive program. Centers
for Medicare & Medicaid Services (CMS), 2010.

[20] D. Freeze. Cybercrime to cost the world $10.5 trillion annually by 2025. Cybercrime Magazine,
2021. Available online; Accessed: 29-Oct-2022.

[21] HackerOne. #1 trusted security platform and hacker program. Available online; Accessed:
20-Oct-2022.

[22] HackerOne. The hacker-powered security report - who are hackers and why do they hack, June
2018. Page 23.

[23] Hapi fhir. Online, 2024. Available: https://hapifhir.io Accessed: Date of Access.

[24] Ryan M. Harrison and Caitlin Voegele. Smart on fhir server implementations. https:

//confluence.hl7.org/pages/viewpage.action?pageId=104565721, Jul 2021. Accessed:
2024-04-21.

[25] Linux For Health. Ibm fhir server user’s guide. github.io, 2024. Available: https:

//linuxforhealth.github.io/FHIR/guides/FHIRServerUsersGuide Accessed: 03/4/2024.

[26] Hl7 fhir(r) api. hl7.org, 2023. Available: https://www.hl7.org/fhir/ Accessed: 01/28/2024.

121

[27] HL7 International. Fast healthcare interoperability resources (fhir) - introduction, 2023. Ac-
cessed: 2024-06-12.

[28] HL7 International. Fhir auditing and logging, 2023. Accessed: 2024-06-12.

[29] HL7 International. Fhir data handling, 2023. Accessed: 2024-06-12.

[30] HL7 International. Fhir security, 2023. Accessed: 2024-06-12.

[31] HL7 International. Fhir specification - data models and interoperability, 2024. Accessed: 2024-
06-12.

[32] HL7 International. Hl7 confluence - fhir community, 2024. Accessed: 2024-06-12.

[33] HL7 International. Smart on fhir - hl7 international, 2024. Accessed: 2024-06-12.

[34] IBM. Ibm fhir server open source project, 2023. Accessed: 2024-06-12.

[35] ISO. Iso/iec 27001 - information security management, 2024. Accessed: 2024-06-12.

[36] JWT.io. Introduction to json web tokens, 2024. Accessed: 2024-06-12.

[37] Gene Kim, Patrick Debois, John Willis, and Jez Humble. The DevOps Handbook: How to
Create World-Class Agility, Reliability, & Security in Technology Organizations. IT Revolution
Press, 2016.

[38] Alissa V. Knight. Playing With FHIR: Hacking and Securing FHIR API Implementations.
Knight Ink, Las Vegas, NV, 2021.

[39] Information Technology Laboratory. National vulnerability database. Available online; Ac-
cessed: 20-Oct-2022.

[40] Lloyd McKenzie and Peter Jordan. Open source implementations. https://confluence.hl7.
org/display/FHIR/Open+Source+Implementations, Jan 2024. Accessed: 2024-04-21.

[41] Microsoft. Security update severity rating system. Available online; Accessed: date of access.

[42] Microsoft. Azure api for fhir pricing, 2023. Accessed: 2024-06-12.

[43] Microsoft. Integrate azure api for fhir with other azure services, 2023. Accessed: 2024-06-12.

[44] Microsoft. Microsoft azure fhir server overview, 2023. Accessed: 2024-06-12.

[45] Microsoft. Security and compliance for azure api for fhir, 2023. Accessed: 2024-06-12.

122

[46] N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood. Exploring software security
approaches in software development lifecycle: A systematic mapping study. Comput. Standards
Interfaces, 50:107–115, Feb 2017.

[47] National Institute of Standards and Technology (NIST). Nist cybersecurity framework, 2024.
Accessed: 2024-06-12.

[48] OAuth. Oauth 2.0 authorization framework, 2023. Accessed: 2024-06-12.

[49] OnePoll. Api security survey: A survey of 250 it managers and security professionals, 2017.
Available online; Accessed: 01-Oct-2022.

[50] Open source implementations. Confluence HL7. Available: https://confluence.hl7.org/

display/FHIR/Open+Source+Implementations Accessed: Date of Access.

[51] Open Web Application Security Project (OWASP). Broken object
level authorization. https://owasp.org/API-Security/editions/2023/en/

0xa1-broken-object-level-authorization/, 2023. Accessed: 2024-04-21.

[52] Craig Opie. Ibm-fhir deep scan report, 2024. Internal document.

[53] Craig Opie. Infosec_reports: Web scraping tool. GitHub Repository, 2024. Available: https:
//github.com/CraigOpie/infosec_reports Accessed: Date of Access.

[54] Craig Opie. Ibm-fhir deep scan report findings, 2025. Accessed: 2024-07-31.

[55] OWASP. Owasp top 10 api security risks - 2023. Online, 2023. Available: https://owasp.

org/API-Security/editions/2023/en/0x11-t10/ Accessed: 03/10/2024.

[56] OWASP. Clickjacking. owasp.org, 2024. Available: https://owasp.org/www-community/

attacks/Clickjacking Accessed: 03/4/2024.

[57] OWASP. Content spoofing. owasp.org, 2024. Available: https://owasp.org/www-community/
attacks/Content_Spoofing Accessed: 03/4/2024.

[58] OWASP. Denial of service. owasp.org, 2024. Available: https://owasp.org/www-community/
attacks/Denial_of_Service Accessed: 03/4/2024.

[59] OWASP. Dom based xss. owasp.org, 2024. Available: https://owasp.org/www-community/

attacks/DOM_Based_XSS Accessed: 03/4/2024.

[60] OWASP. Lack of resources and rate limiting. owasp.org, 2024. Available: https://owasp.

org/API-Security/editions/2019/en/0xa4-lack-of-resources-and-rate-limiting/ Ac-
cessed: 03/4/2024.

123

[61] OWASP. Owasp secure headers project. owasp.org, 2024. Available: https://owasp.org/

www-project-secure-headers/ Accessed: 03/4/2024.

[62] OWASP. Testing cross origin resource sharing. owasp.org, 2024. Available: https://owasp.

org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_

Testing/11-Client-side_Testing/07-Testing_Cross_Origin_Resource_Sharing Ac-
cessed: 03/4/2024.

[63] OWASP. Testing for client side url redirect. owasp.org, 2024. Available: https://owasp.

org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_

Testing/11-Client_Side_Testing/04-Testing_for_Client_Side_URL_Redirect Accessed:
03/4/2024.

[64] OWASP. Testing for reflected cross site scripting. owasp.org, 2024. Available:
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_

Application_Security_Testing/07-Input_Validation_Testing/01-Testing_for_

Reflected_Cross_Site_Scripting Accessed: 03/4/2024.

[65] Open Web Security Application Project (OWSAP). Owsap api security project. Available
online; Accessed: 20-Oct-2022.

[66] Pentester. Offensive infosec. Available online; Accessed: 20-Oct-2022.

[67] Anthony Peruma. Nlp_example. GitHub Repository, 2024. Available upon request: https:

//github.com/iSQARE-Lab/NLP_Examples Accessed: Date of Access.

[68] Ionut Popescu. Less known web application vulnerabilities stripped.
Online, 2014. Available: https://owasp.org/www-pdf-archive/

OWASP-Ionut-Popescu-Less-Known-Web-Application-Vulnerabilities-Stripped.pdf.

[69] Ltd. PortSwigger. Burp suite by portswigger. Online, 2024. Available: https://portswigger.
net/burp Accessed: 01/28/2024.

[70] Inc. Postman. Postman - the collaboration platform for api development. Online, 2024. Avail-
able: https://www.postman.com Accessed: 01/28/2024.

[71] Public test servers. Confluence HL7. Available: https://confluence.hl7.org/display/

FHIR/Public+Test+Servers Accessed: Date of Access.

[72] Farhan A. Qazi. Insecure application programming interfaces (apis) in zero-trust networks.
Capitol Technology University, Dec 2021.

[73] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams. A systematic mapping study of infrastruc-
ture as code research. Inf. Softw. Technol., 108:65–77, Apr 2019.

124

[74] SMART Health IT. Smart on fhir: An open, standards-based platform for healthcare apps,
2023. Accessed: 2024-06-12.

[75] Iron Bank Value Stream. Overall risk assessment (unclassified). Platform One, 2022.

[76] TrendMicro. Definition of exploit. Available online; Accessed: date of access.

[77] United States Congress. Health insurance portability and accountability act of 1996. https:

//www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html, 1996.
Accessed: 2024-04-21.

[78] U.S. Congress. 21st century cures act, section 4001: Assisting doctors and hospitals in improv-
ing quality of care for patients, 2016. Accessed: 2024-06-12.

[79] U.S. Congress. 21st century cures act, section 4002: Transparent reporting on usability, security,
and functionality, 2016. Accessed: 2024-06-12.

[80] U.S. Congress. 21st century cures act, section 4003: Interoperability, 2016. Accessed: 2024-06-
12.

[81] U.S. Congress. 21st century cures act, section 4004: Information blocking, 2016. Accessed:
2024-06-12.

[82] U.S. Congress. 21st century cures act, section 4005: Ehr usability and improvement, 2016.
Accessed: 2024-06-12.

[83] U.S. Congress. 21st century cures act, section 4006: Patient access and empowerment, 2016.
Accessed: 2024-06-12.

[84] U.S. Department of Health and Human Services. Health information technology for economic
and clinical health (hitech) act, 2009. Accessed: 2024-06-12.

[85] John Viega and Gary McGraw. Building Secure Software: How to Avoid Security Problems the
Right Way. Addison-Wesley Professional, 2001.

[86] Wazuh. Proof of concept guide. Online, 2024. Available: https://documentation.wazuh.

com/current/proof-of-concept-guide/ Accessed: 03/10/2024.

[87] Wikipedia. Vulnerability (computing). Available online; Accessed: date of access.

[88] S. Zein, N. Salleh, and J. Grundy. A systematic mapping study of mobile application testing
techniques. J. Syst. Softw., 117:334–356, Jul 2016.

125

